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Abstract

The human electroencephalogram (EEG) is globally characterized by a 1=f power spectrum superimposed with certain peaks, whereby

the ‘‘alpha peak’’ in a frequency range of 8–14Hz is the most prominent one for relaxed states of wakefulness. We present simulations of

a minimal dynamical network model of leaky integrator neurons attached to the nodes of an evolving directed and weighted random

graph (an Erd +os–Rényi graph). We derive a model of the dendritic field potential (DFP) for the neurons leading to a simulated EEG that

describes the global activity of the network. Depending on the network size, we find an oscillatory transition of the simulated EEG when

the network reaches a critical connectivity. This transition, indicated by a suitably defined order parameter, is reflected by a sudden

change of the network’s topology when super-cycles are formed from merging isolated loops. After the oscillatory transition, the power

spectra of simulated EEG time series exhibit a 1=f continuum superimposed with certain peaks.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The electrical activity of the brain can be measured with
the electroencephalogram (EEG). Its origin is due to the
synchronized activity of large formations of cortical
neurons, the pyramidal cells. These nerve cells possess an
axial symmetry and they are aligned in parallel perpendi-
cular to the surface of the cortex thus forming a palisade of
cell bodies and dendritic trees [11,45]. They receive
excitatory input at the superficial apical dendrites from
thalamic relay neurons and inhibitory input at the basal
dendrites and at their somata from local interneurons
[11,45,18]. Excitatory and inhibitory synapses cause
different ion currents through their cell membranes thus
leading to either depolarization or hyperpolarization,

respectively. When these synapses are activated, a single
pyramidal cell behaves as a microscopic electric dipole
surrounded by its characteristic dendritic field in the
extracellular space. The dendritic field potentials (DFP) of
a large assembly of cortical pyramidal cells superimpose to
the local field potential (LFP) of a dipole layer which
eventually contributes to the EEG measurable at the
human’s scalp [11,56,5,40].
One of the most obvious features of the EEG are

oscillations in certain frequency bands. The alpha waves are
sinusoidal-like oscillations between 8 and 14Hz, strongly
pronounced over parietal and occipital recording sites
which reflect a state of relaxation during wakefulness, with
no or only low visual attention. Alpha waves are related to
awareness and cognitive processes [41,4,30,47]. In the
power spectrum of the EEG, these oscillations are
represented by particular peaks superimposed to a broad-
band 1=f continuum [11,7].
The 1=f behavior and the existence of distinguished

oscillations in the EEG such as the alpha waves are
cornerstones to evaluate computational models of the
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EEG. Yet, modeling these brain rhythms has a long
tradition. Wilson and Cowan [53] were the first who used a
population model of excitatory and inhibitory neurons that
innervate each other. They introduced a two-dimensional
state vector whose components describe the proportion of
firing McCulloch–Pitts neurons [38] within a unit volume
of neural tissue at an instance of time. Lopez da Silva et al.
[35] pursued two different approaches: a distributed model
of the thalamus where relay cells and interneurons are
considered individually, and a ‘‘lumped’’ model analogous
to the neural mass model of Wilson and Cowan [53]. Lopez
da Silva et al. [35,36] were able to show that their model
reproduces a peak around 10Hz, i.e.‘‘alpha waves’’, in the
spectrum.

The neural mass model [35] has been further developed
by Freeman [17], Jansen et al. [24,25], Wendling et al.
[51,52], and researchers from the Friston group [12–14] in
order to model the EEG of the olfactory system, epileptic
EEGs, and event-related potentials (ERP), respectively.

On the other hand, Rotterdam et al. [50] generalized the
model [35] to spatiotemporal dynamics by considering a
chain of coupled cortical oscillators. A similar approach
has been pursued by Wright and Liley [55,54] who
discussed a spatial lattice of coupled unit volumes of
excitatory and inhibitory elements obeying cortical con-
nectivity statistics. The most important result that we shall
appreciate here is that the power spectrum exhibits the
alpha peak, and that there is a shift of that peak towards
the beta band with increasing input describing arousal.

Moreover, Liley et al. [34] suggested a distributed model
of cortical alpha activity using a compartmental descrip-
tion of membrane potentials [31]. In such an approach,
nerve cells are thought to be built up by cylindrical
compartments that are governed by generalized Hodgkin–
Huxley equations [21]. Liley et al. [34] reported two
oscillatory regimes of this dynamics: one having a broad-
band spectrum with a peak in the beta range of about
20Hz, and the other narrowly banded with a peak around
the alpha frequency.

Surveying these attempts, one recognizes two main lines
of research. In the first approach, relatively small networks
of neurons, or even of neural masses, are hand-crafted in
order to meet anatomical and physiological constraints
[1,16,17,34–36,50–55,24,25,12–14]. In the second one,
statistical properties of the nervous tissue are treated by
field theoretical approaches [40,28,26,42,43,56,57]. Yet, the
recent developments of random graph theory describing
networks with complex topology [2,10,9,39,23,8,44,46,29]
suggest a third, medial, way of brain modeling using
complex networks whose nodes are attached to dynamical
neuron models [46,27,48,22,58,32].

In this paper, we shall pursue this third approach by
proposing a minimal dynamical network model where the
onset of oscillatory behavior is correlated with the
emergence of super-cycles in the network’s topology. The
network is provided by an evolving directed and weighted
Erd +os-Rényi graph of N nodes where all connections

between two nodes are equally likely with increasing
probability [2,10,9]. To each node of the graph a simple
neuron model, the leaky integrator neuron, is attached
[53,20,33,22].

2. Minimal random neural networks

In this section, we describe our minimal neural network
model, namely an evolving directed and weighted Erd +os–
Rényi graph. The nodes of this most simple network type
are occupied by a rather simple neuron model, the leaky
integrator unit. We argue that the net input to such a unit
can be regarded as a rough approximation of the DFP, and
demonstrate how the superposition of the DFPs of a neural
mass give rise to an estimator of the LPF. Finally, the
superposition of the LFPs should be considered as our
model EEG.

2.1. A minimal network model

A directed Erd +os–Rényi graph consists of a set of
vertices V that are randomly connected by arrows taken
from an edge set E � V � V with equal probability q. The
topology of the graph is completely described by its
adjacency matrix A ¼ ðaijÞ where aij ¼ 1, if there is an
arrow connecting the vertex j with the vertex i (i.e. ðj; iÞ 2 E

for i; j 2 V ) while aij ¼ 0 otherwise. A directed and
weighted Erd +os–Rényi graph is then described by the
weight matrix W ¼ ðwijÞ which is obtained by element-wise
multiplication of the adjacency matrix with constants gij,
wij ¼ gijaij .
The weights wij may be positive or negative. In the

former case the connection j! i is called excitatory, in the
latter inhibitory. Biologically plausible models must satisfy
Dale’s law saying that excitatory neurons have only
excitatory synapses while inhibitory neurons only possess
inhibitory synapses [15]. Therefore, the column vectors of
the weight matrix are constrained to unique sign. We meet
this requirement by randomly choosing a proportion p of
the vertices to be excitatory and the remainder to be
inhibitory.
In our model the weights become time-dependent due to

the following evolution algorithm:

(i) Initialization: Wð0Þ ¼ 0.
(ii) At evolution time t, select a random pair of nodes i; j.
(iii) If they are not connected, create a synapse with weight

wijðtþ 1Þ ¼ dex if j is excitatory, and wijðtþ 1Þ ¼ din if j

is inhibitory. If they are already connected, enhance
the weight wijðtþ 1Þ ¼ wijðtÞ þ dex if wijðtÞ40 and
wijðtþ 1Þ ¼ wijðtÞ þ din if wijðtÞo0. All other weights
remain unchanged.

(iv) Repeat from (ii) for a fixed number of iterations L.

For the excitation-to-inhibition ratio for balanced activity
[49] to be of the order of magnitude of 1:4 [42], we chose as
the ‘‘learning rates’’ dex ¼ þ1 for excitatory synapses and
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