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Abstract

In this paper, we formulate and study a new class of discrete neural networks with time dependent delay and impulses. Sufficient

conditions for the asymptotic stability of a unique equilibrium of the networks with Lipschitizian activation functions are established.

Also when the impulsive jumps are absent the results reduce to those of non-impulsive networks.
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1. Introduction

Mathematical modelling in neural networks has been
based on neurons that are different both from real
biological neurons and from the realistic functioning of
simple electronic circuits. The neuronal model is made
up of four basic components: an input vector, a set of
synaptic weights, summing function with an activation,
or transfer function, and an output. From the view point of
mathematics, an artificial neural network corresponds
to a nonlinear transformation of some inputs into certain
outputs. In the past three decades, neural networks
architectures have been extensively researched and devel-
oped [2,4–13,15–24,26,29–33,36–39,41–49]. Among the
many classes of neural networks studied intensively during
the last two decades, the Hopfield-type network [21,22] is
an important one because of its potential for applications
in associative memory, pattern recognition, signal proces-

sing, systems control, data compression, optimization
problem, etc.
Most neural networks can be classified as either

continuous and discrete. Recently, there have been many
nice works on the continuous or piecewise continuous
neural networks [1,15,46,12,23,31,29,32]. However, there
are still many networks existing in the real world which
display some kind of dynamics in between the two groups.
These include for example many evolutionary processes,
particularly some biological systems such as biological
neural networks and bursting rhythm models in pathology.
Other examples include optimal control models in econom-
ics, frequency-modulated signal processing systems, and
flying object motions. All these real-world systems and
natural processes behave in discrete or continuous
style interlaced with instantaneous and abrupt changes.
Systems with impulsive effects describe evolution processes
which at certain moments rapidly change their state
[28,3]. Impulsive differential equations are found in
almost every domain of applied science, see for example
[14,27,35,40,34,25].
It is important and, in fact, necessary to study impulsive

systems. This paper is an attempt toward this goal.
Specifically, in this work we research a new type of neural

ARTICLE IN PRESS

www.elsevier.com/locate/neucom

0925-2312/$ - see front matter r 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.neucom.2006.11.022

$This work was supported by the Natural Science Foundation of

China under Grant 10471117.
�Corresponding author.

E-mail addresses: cnczzhanghong@163.com (H. Zhang),

lschen@amss.ac.cn (L. Chen).

www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2006.11.022
mailto:cnczzhanghong@163.com
mailto:lschen@amss.ac.cn


networks—impulsive neural networks—as an appropriate
description of such phenomena of abrupt dynamical
changes of essentially discrete systems. The dynamical
characteristics of the Hopfield network are assumed to be
governed by the dynamics of the following ordinary
differential equations:

mi

dxiðtÞ

dt
¼ �

xiðtÞ

Ri

þ
Pm

j¼1Tijf iðxjðtÞÞ þ I i;

t4t0 2 R; i ¼ 1; 2; . . . ;m;

xðt0Þ ¼ x0 2 Rm;
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>>>:

(1)

where m is the number of neurons in the network; xiðtÞ is
the average membrane potential of the ith neuron at time t;
mi denotes the capacitance in the ith sub-circuit; f i is the
activation function of the ith neuron; Tij is the connection
strength from the jth neuron to the ith neuron; I i is a
constant external input current to the ith neuron; Ri

denotes the resistance defined by 1=Ri ¼ 1=ri þ
Pm

j¼1jTijj

where ri denotes the resistance representing the cell
membrane impedance.

In recent years, neural networks supplemented with
impulse conditions in the continuous-time case or discrete-
time case have been investigated [2,15,29,42–45]. In the
following we consider the system:

duiðtÞ

dt
¼ �aiuiðtÞ þ
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j¼1bijgjðujðt� tðtÞÞÞ þ ci;

t40; i ¼ 1; 2; . . . ;m;
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m:
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(2)

Next we formulate two discrete-time analogues of the
continuous-time system (2). Let h be an arbitrary positive
fixed real number. The semi-infinite interval ½0;1Þ is
replaced by the interval ½½0=h�h;1Þ where ½r� denotes the
integer part of r 2 R. We let n0 ¼ ½0=h� and consider the
sequence fn0h; ðn0 þ 1Þh; ðn0 þ 2Þh; . . .g as a discrete set of
points of the interval ½0;1Þ. We replace the system (2) by
the following differential equation with piecewise constant
arguments

duiðtÞ

dt
¼ �aiuiðtÞ þ

Pm
j¼1bijgj uj

t

h
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t

h
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h
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h

� �
h; i ¼ 1; 2; . . . ;m;

uið0Þ ¼ ui0 2 R
m:
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(3)

We let n ¼ ½t=h�, and use the notation ujðnÞ ¼ ujðnhÞ. Thus
we consider the following system:

duiðtÞ

dt
¼ �aiuiðtÞ þ

Xm

j¼1

bijgjðujðn� ½tðnÞ�ÞÞ þ ci,

t 2 ½nh; ðnþ 1ÞhÞ; n ¼ 1; 2; . . . . ð4Þ

By using a semi-implicit Euler type approximation, we
derive the following difference equation:

uiðnþ 1Þ ¼
1

1þ aih
uiðnÞ þ

h

1þ aih

Xm

j¼1

bijgjðujðn� ½tðnÞ�ÞÞ

þ
cih

1þ aih
; n40; i ¼ 1; . . . ;m. ð5Þ

In the following we use another approximation and put (4)
in the form:

d

dt
½uiðtÞe

ait� ¼ eait
Xm

j¼1

bijgjðujðn� ½tðnÞ�ÞÞ þ ci

 !
.

Integrate both sides of this equation over the interval
½nh; tÞ, let t! ðnþ 1Þh and simplify the resulting equation
to obtain

uiðnþ 1Þ ¼ e�aihuiðnÞ þ
1� e�aih

ai

Xm

j¼1

bijgjðujðn� ½tðnÞ�ÞÞ þ ci

 !
,

n40; i ¼ 1; 2; . . . ;m. ð6Þ

In particular we consider the following impulsive difference
systems:

uiðnþ 1Þ ¼
1

1þ aih
uiðnÞ þ

h
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þ
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; nank; i ¼ 1; . . . ;m;

uiðnk þ 1Þ � uiðnkÞ ¼ Ink
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and

uiðnþ 1Þ ¼ e�aihuiðnÞ þ
1� e�aih

ai

ð
Pm

j¼1bijgjðujðn� ½tðnÞ�ÞÞ þ ciÞ;

nank; i ¼ 1; 2; . . . ;m;

uiðnk þ 1Þ � uiðnkÞ ¼ Ink
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Using the similar method in [15], we suppose that gjð�Þ are
globally Lipschitz continuous such that

jgjðujÞ � gjðvjÞjpLjjuj � vjj; j ¼ 1; 2; . . . ;m,

ai4Li

Xm

j¼1

jbjij; i ¼ 1; 2; . . . ;m

and the impulsive jumps Ink
ð�Þ as assumed to satisfy

Ink
ðx�i Þ ¼ 0 ði ¼ 1; 2; . . . ;mÞ where ðx�1;x

�
2; . . . ;x

�
mÞ is the

equilibrium of the above difference equation (5) (or (6)).
Then system (7) (or (8)) exists a unique equilibrium.
Let yiðnÞ ¼ uiðnÞ � u�i ði ¼ 1; 2; . . . ;mÞ where ðu�1; u

�
2;

. . . ; u�mÞ is the unique equilibrium of system (7) (or (8)),
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