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a b s t r a c t

The kernel regularized least squares (KRLS) method uses the kernel trick to perform non-linear
regression estimation. Its performance depends on proper selection of both a kernel function and a
regularization parameter. In practice, cross-validation along with the Gaussian RBF kernel have been
widely used for carrying out model selection for KRLS. However, when training data is scarce, this
combination often leads to poor regression estimation. In order to mitigate this issue, we follow two
lines of investigation in this paper. First, we explore a new type of kernel function that is less susceptible
to overfitting than the RBF kernel. Then, we consider alternative parameter selection methods that have
been shown to perform well for other regression methods. Experiments conducted on real-world
datasets show that an additive spline kernel greatly outperforms both the RBF and a previously proposed
multiplicative spline kernel. We also find that the parameter selection procedure Finite Prediction Error
(FPE) is a competitive alternative to cross-validation when using the additive splines kernel.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Non-linear regression estimation is an important scientific
modeling tool. Several methods have been proposed to tackle this
estimation problem, with the most flexible and powerful ones
falling in the category of the so-called kernel methods [1]. Among
those is the kernel regularized least squares (KRLS) method [2–4],
which enjoys good statistical and computational properties.

In a nutshell, the kernel regularized least squares method
works as follows. Using a sequence of training data

ðx1; y1Þ;…; ðxn; ynÞ; xARd; yAR; ð1Þ
drawn i.i.d. from a fixed but unknown probability distribution
Pðx; yÞ, a function f K ;γðxÞ is obtained as the solution of the
minimization problem

f K ;γ ¼ arg min
f AHK

1
n

Xn
i ¼ 1

yi� f ðxiÞ
� �2þγ J f J2K

" #
; ð2Þ

where γ40 is a real-valued regularization parameter and HK is a
Reproducing Kernel Hilbert Space (RKHS) induced by a kernel K. A
function f AHK with bounded J f JK satisfies some regularity
properties (e.g., smoothness), hence the use of the term “regular-
ized” to name the method.

In order to apply KRLS successfully, that is, to use the obtained
f K ;γðxÞ to predict the output y of unseen x, we must find such f K ;γ
that (1) fits the training sequence well (i.e., minimizes the squared
loss) and (2) is a reasonably smooth function (i.e., minimizes the
norm J � JK ). As Statistical Learning Theory dictates [5], one can
always minimize the former at the expense of the latter, and vice
versa. Therefore, proper selection of both the kernel K and the
regularization parameter γ is indispensable for the generalization
performance of KRLS.

Formally, the best choice of K and γ is the one that yields in
Expression (2) a function f K;γ that minimizes the risk of prediction
error as measured by the expected squared loss

Rðf Þ ¼
Z

y� f ðxÞð Þ2 dPðx; yÞ: ð3Þ

The minimum of the functional Rðf Þ is attained at the regression
function [5, Chapter 1]. Thus, the closer Rðf K ;γÞ is to the minimum
of Rðf Þ, the closer the outputs of f K;γ are to those of the real
regression function.

The choice of suitable K and γ belongs to the category of
problems known as model selection. In contrast to the related
category of model assessment, model selection does not require the
estimation of the value of the prediction error Rðf Þ. It suffices to
indicate the function with the smallest Rðf Þ among a set of
candidate functions f 1; f 2;…; f N .

In practice, the value of Rðf Þ cannot be calculated because
Pðx; yÞ is unknown. A widely employed workaround in this case is
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to use available data in a cross-validation setting, that is, to use
some portion of the data to perform the minimization of Expres-
sion (2) for several candidates of K and γ, and to reserve the other
portion for approximating Rðf Þ and selecting the best K and γ.
Conducting cross-validation in KRLS is relatively inexpensive
compared to other learning methods, and this corresponds to
the most interesting property of the method.

Given the universal approximation properties of the Gaussian
RBF kernel [6]

kðxi; xjÞ ¼ exp � Jxi�xj J22
σ2

 !
; ð4Þ

it has become the kernel of choice in much of machine learning
research. However, these nice theoretical properties of the RBF
kernel do not extend very well to practice. When combined with
cross-validation and small training sets, RBF kernels have a great
potential for overfitting. Recently, there has been a renewed
interest in developing kernels with less potential for overfitting
while retaining a good approximation property [7].

The kernel regularized least squares method is computationally
efficient in small sample situations, although it may be rendered
ineffective by the issues plaguing the popular combination of
cross-validation and RBF kernels. Having that in mind, in this
paper we follow [7] and investigate the use of splines as a safer
choice to compose a multidimensional kernel function. We go one
step further in this work and propose the use of additive spline
kernels instead of multiplicative ones. We have found experimen-
tal evidence that the additive version is more appropriate to
regression estimation in small sample situations.

We then proceed by investigating alternative statistical and
heuristic procedures for the selection of the regularization para-
meter γ. The procedures we consider were shown to perform well
for other regression methods, and, to the best of our knowledge,
have not been applied to KRLS before. Surprisingly, though, most
of these procedures fail to outperform cross-validation in small
sample situations. A notable exception is the Finite Prediction
Error (FPE) method, which has performed as well as cross-
validation when both were used in combination with the additive
spline kernel.

The remainder of this paper is organized as follows. In Section 2
we show how the minimization problem in Expression (2) is
solved for fixed K and γ. In Section 3 we describe the issues
surrounding the choice of a kernel function and present argu-
ments in defense of the additive spline kernel. In Sections 4 and 5
we describe statistical and heuristic procedures used in this work
to perform parameter selection, starting with an explanation on
how to efficiently conduct leave-one-out cross-validation in KRLS.
In Section 6 we report experimental evidence in favor of the
additive spline kernel and also the results of the experimental
evaluation of the considered parameter selection procedures. We
conclude and give indications of future work in Section 7.

2. Solving the minimization problem of KRLS

The content in this section is informational and also introduces
some notation used afterwards. To start with, note that KRLS re-
quires the choice of a symmetric, positive definite kernel function
k : ðRd � RdÞ↦R that spans the set of functions HK under consid-
eration. An example of such function is the well-known Gaussian
RBF kernel—Expression (4). In this section, we assume that a
kernel function kðx0; xÞ has already been chosen, including even-
tual parameters.

By the representer theorem [8], the minimizer in Expression (2)
has an expansion of the form

f ðxÞ ¼
Xn
i ¼ 1

αikðxi; xÞ; αiAR: ð5Þ

Hereafter, we denote by y the n� 1 vector y1;…; yn
� �> and by K

the n� n matrix with entries kij ¼ kðxi; xjÞ. We also denote by α the
n� 1 vector α1;…;αn½ �> .

Plugging Expression (5) into Expression (2) yields the following
expression for calculating the squared loss:

1
n

Xn
i ¼ 1

yi� f ðxiÞ
� �2 ¼ 1

n
α>KKα�2

n
α>Kyþconst: ð6Þ

Moreover, by considering the special properties of the norm in an
RKHS, we have that J f J2K ¼α>Kα. Ignoring the constant term in
Expression (6), we arrive at the following quadratic minimization
problem for Expression (2):

αγ ¼ arg min
αARn

1
n
α>KKα�2

n
α>Kyþγα>Kα

� �
: ð7Þ

A necessary and sufficient condition for the solution of this
minimization problem is obtained by taking the derivative of
Expression (7) with respect to each αi and equating it to zero. By
doing that, we arrive at the following system of linear equations:

2
n
KKαγ�

2
n
Kyþ2γKαγ ¼ 0: ð8Þ

Denoting by I the n� n identity matrix, extracting 1=n from γ, and
solving for αγ in Expression (8), we arrive at the solution of the
minimization problem in Expression (7):

αγ ¼ ðKþγIÞ�1y: ð9Þ
Plugging (9) into Expression (5) yields the closed form expression
for the function minimizing Expression (2).

Most model selection procedures require the calculation of αγ

for a fair number of γ candidates. In order to avoid solving one
system of linear equations for each new γ, one can take advantage
of the eigendecomposition of the kernel matrix: K ¼UΣU> , where
U is the n� n matrix formed by the eigenvectors of K and Σ is the
n� n diagonal matrix containing the eigenvalues σi of K. Denoting
by Λγ the n� n diagonal matrix with entries λii ¼ 1=ðσiþγÞ, αγ can
be calculated by performing only matrix multiplications

αγ ¼ UΛγU
>y: ð10Þ

Both the eigendecomposition of a matrix and a typical algorithm
for solving a dense system of linear equations can be carried out in
Oðn3Þ time, with smaller constants for the latter. However, the
eigendecomposition may still be preferable depending on n and
the number of γ candidates considered.

3. Choosing a kernel function for KRLS

The choice of a kernel function for kernel regularized least
squares defines the set of functions where the minimization of
Expression (2) occurs. For example, if a linear kernel kðxi; xjÞ ¼ x>

i xj
is chosen, then the function obtained by KRLS will be a hyperplane
in the input space, which is enough for learning linear regressions.
However, the regression function is not linear in the input space
for a variety of practical problems. This is why we have to choose
between kernel functions that generate non-linear functions in the
input space.

A typical non-linear kernel is the widely used Gaussian Radial
Basis Function (RBF)—Expression (4). In fact, this expression defines
a family of kernel functions parameterized by σ40, the so-called
width parameter. By controlling σ, it is possible to achieve universal
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