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a b s t r a c t

KPCA can extract nonlinear features of data set. However, its efficiency is in inverse proportion to the

size of the training sample set. In this paper, we proposed an adaptive kernel subspace method to

extract features efficiently. The method is methodologically consistent with KPCA, and can improve the

efficiency by adaptively selecting the spanning vectors of the kernel principal components, meanwhile,

not affect the accuracy much. Experiments on two-dimensional data, MNIST dataset and USPS dataset

show that the feature extraction method is more efficient than that associated with KPCA and reference

methods.

Crown Copyright & 2013 Published by Elsevier B.V. All rights reserved.

1. Introduction

Kernel principal component analysis (KPCA) [1,2], which is a
nonlinear extension of principal component analysis (PCA) [3], is
widely used to extract nonlinear features of data set. The core
idea of KPCA is to first map the input space into a feature space
using a nonlinear mapping and then compute the principal
components in the feature space. As a result, the extracted kernel
principal component of the mapped data is nonlinear with
regards to the original input space, and the extracted kernel
principal components are expanded in terms of all training
samples in the feature space. Thus, if we use KPCA to extract
features of a sample, all the kernel functions between this sample
and the total training samples in the feature space should be
computed. As a result, the larger the size of training sample set is,
the lower the efficiency of feature extraction becomes. This is
called the batch nature of the KPCA. The batch nature binders
KPCA in terms of computation and memory demand as the data
size increases. Especially, for real world applications with large
numbers of training samples, the KPCA based feature extraction is
inefficient and even unfeasible. Indeed, other kernel approaches
also suffer from similar problem, such as kernel Fisher discrimi-
nant analysis [4], kernel nonlinear regression [5] and Kernel
Canonical Correlation Analysis [6].

In recent years, some algorithms have been proposed to deal with
the low efficiency induced by the batch nature of kernel method in
feature extracting. Generally, these algorithms primarily root in the
following two ideas. The first idea is based on the supposition that at
least one training sample in the feature space can be exactly
expressed as a linear combination of the others. The second idea is
that the principal component may be expanded approximately in
terms of some training samples in the feature space, the number of
which is fewer than the number of total training samples. For the first
idea, it is only reasonable and feasible for linearly dependent training
samples because there is at least one training sample that can be
exactly expressed as a linear combination of the others. However, for
some real world applications associated with Gaussian kernel func-
tion, the training samples in the feature space do not meet the
supposition of the first idea. For the second idea, it develops only with
the viewpoint of numerically approximating the principal component
ground truth in the feature space. The typical works are expectation
maximization approach [7] proposed by Rosipal and Girolami and
improved KPCA (IKPCA) method [8] proposed by Yong Xu et al.. The
expectation method [7] improves the implementation efficiency of
KPCA with a large number of data points, though this approach is not
able to improve KPCA-based feature extraction. The IKPCA method [8]
is methodologically consistent with the essence of KPCA, and it can
speed up the feature extraction. However, the training samples used
to expand principal component compose a fixed proportion of the
total training samples. Moreover, these training samples could not be
chosen adaptively. Kim et al. [9] first propose to kernelize the
generalized Hebbian algorithm, which is an iterative self-organizing
computation procedure for linear PCA, to estimate principal compo-
nents in the feature space. Later, Gunter et al. [10] developed gain
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adaptation methods to improve convergence of the kernel Hebbian
algorithm by incorporating the reciprocal of the eigenvalue as a part
of the principal component. While these two methods can reduce the
time complexity of computing kernel principal component, it is not
clear how the added novel data can be incorporated to update the
kernel principal component. Incremental KPCA [11–13] can reduce
the time complexity of computing principal component. Extraordi-
narily, Chin and Suter [12,13] show how to obtain the kernel principal
component by incrementally updating singular value decomposition
(SVD) of the mapped data in feature space. To maintain constant
update speed and memory usages, the kernel principal component
representations was compressed by constructing reduced-set expan-
sion, which is computationally expensive. Greedy KPCA[14,15] was
employed to approximate the principal component by a prior filtering
of the training data. However, one drawback is that the filtering could
be computationally expensive by itself. Changshui Zhang et al. [16]
proposed a general kernelization framework based on PCA and KPCA
for feature extraction, in which the low-rank KPCA is adopted to
remove noise in the feature space. However, the batch nature still
exists because of using all training samples as spanning vectors.
Adaptive KPCA (AKPCA) [17–19] is with rapid and accurate computa-
tion for extracting kernel principal components. However, it does not
show clearly about how often to update the principal components to
achieve a certain tradeoff between its computation efficiency and
update ability. Yi Yang et al. [20] proposed an unsupervised feature
selection method to select the most discriminative feature subset
from the whole feature set in batch mode. However, it is not suitable
for selecting spanning vector in KPCA related problems. An approx-
imate linear dependence condition is proposed in ALD method [21] to
select training samples with a given approximation accuracy error.
However, the number of selected samples which are used to expand
kernel principal components is mainly impacted by the given
approximation accuracy error.

In this paper, an adaptive kernel subspace method is proposed,
which is still subject to the KPCA methodology and chooses the
training sample adaptively to approximately linearly expand
kernel principal components in the feature space. The proposed
method is derived directly from the KPCA methodology, and the
feature extraction process using the proposed method is more
efficient than that using the KPCA, IKPCA [8] and AKPCA [17]. The
rest of this paper is organized as follows. KPCA is briefly introduced
in Section 2. Then the adaptive kernel subspace method is
presented on Section 3, followed by the experiment results show
in Section 4. Finally, the conclusion is presented in Section 5.

2. Nonlinear extension of PCA based on a kernel function

As a nonlinear method, KPCA is nothing but the PCA in the feature
space [22]. We assume that xi, i¼ 1,2,. . .,N, xiARn are training
samples in input space. KPCA nonlinearly maps xi into a higher
dimensional space F by a nonlinear function f : Rn-F,xi-fðxiÞ, and
subsequently performs linear PCA in F. Assuming that the mapped
data is centered in the feature space, its covariance matrix is given by

Cf ¼
1

N

XN

i ¼ 1

fðxiÞfðxiÞ
T

The map f is induced by a kernel function kðd,dÞ that allows us
to evaluate inner products in F:ofðxiÞ,fðxjÞ4 ¼ kðxi,xjÞ

i,j¼ 1,2, � � � ,N. Suppose that Cf has an eigendecomposition
Cf ¼ 1=NðVNLNVT

NÞwhere VN ¼ ½v
1,v2,. . .,vN �, LN ¼ diagðl1,l2

,. . .lNÞ, vw and corresponding lw satisfy

Cfvw ¼ lwvw ð1Þ

Given that the mapping function f is implicit, this eigendecom-
position can not be performed on Cf to compute the kernel principal

components. KPCA circumvents the kernel principal component by a
dual eigendecomposition problem for kernel Gram matrix
Nlwaw ¼ Kaw, in which aw ¼ ½aw

1 ,aw
2 ,. . .,aw

N �
T is the normalized

eigenvector associated with the w-th largest eigenvalues. Then the
kernel principal components in the feature space take the form of

Vr ¼ ½v
1,v2,. . .,vN� ¼ ½fðx1Þ,fðx2Þ,. . .,fðxNÞ�½a

1,a2,. . .,aN�

For vw ¼SN
i ¼ 1aw

i fðxiÞ, we have vwAspanffðx1Þ,fðx2Þ, � � � ,fðxNÞg,
and fðx1Þ,fðx2Þ,. . .,fðxNÞ are named as the spanning vectors of
kernel principal component vw.

For simplicity, we have made the above assumption that the
mapped data are zero-mean. However, the assumption is often
invalid. Denoting the mean of the mapped data as m¼ ð1=NÞ

SN
i ¼ 1fðxiÞ, we still can get the kernel principal components as

linear combination of centered data as

~vw
¼
XN

i ¼ 1

~aw
i
~fðxiÞ ¼ ½ðfðx1Þ�mÞ,ðfðx2Þ�mÞ, � � � ,ðfðxNÞ�mÞ� ~aw

where ~aw is the normalized eigenvector associated with the
eigendecomposition problem for centered kernel Gram matrix

~K ~aw
¼ ðK�1NK�K1Nþ1NK1NÞ ~a

w
¼Nlw ~a

w

where ~K is the centered kernel Gram matrix, and 1N is a N�N

matrix with all entries equal to (1).
It is easy to know that for the sample f(x) in the feature space,

the most representative m dimensional features extracted using
KPCA form the following vector:

Y ¼

PN
i ¼ 1

a1
i kðxi,xÞffiffiffiffiffi
l1

p ,

PN
i ¼ 1

a2
i kðxi,xÞffiffiffiffiffi
l2

p , � � � ,

PN
i ¼ 1

am
i kðxi,xÞffiffiffiffiffiffi
lm

p
2
6664

3
7775

T

ð2Þ

According to the essence of the KPCA methodology, the feature
extraction procedure based on (2) is theoretically able to produce
the minimum reconstruction error.

3. Kernel subspace method for feature extraction

3.1. The idea of adaptive kernel subspace method

The former feature extraction using KPCA from (2) indicates
that to obtain features of a sample in the feature space, we
should calculate all the kernel functions between this sample
and the total training samples. It further means that the
implementation is inefficient when the training data set is
large. The idea of kernel subspace method is that the kernel
principal components for feature extraction can be expressed
approximately as a linear combination of some of the training
samples. These samples, which can be chosen adaptively, span
a subspace of feature space F. This means that the spanning
vectors of the extracted kernel principal components of kernel
subspace method are a subset of that of KPCA. Assume that
vw ¼SM

i ¼ 1bw
i fðxn

i Þ, where MoN and fðxn

1Þ,fðx
n

2Þ,. . .,fðx
n
MÞ are

spanning vectors of vw, we get

lw

XM
i ¼ 1

bw
i ofðxn

kÞ,fðx
n

i Þ4

 !
¼

1

N

XN

i ¼ 1

ofðxn

kÞ,fðxiÞ4ofðxiÞ,
XM
j ¼ 1

bw
j fðx

n

j Þ4 ,

k¼ 1,2,. . .,M

based on the methodology of KPCA and Eq. (1).Given that M�N

matrix K1i,j : ¼ ofðxn

i Þ,fðxjÞ4 ¼ kðxn

i ,xjÞ and M�M matrix
K2i,j : ¼ ofðxn

i Þ,fðx
n

j Þ4 ¼ kðxn

i ,xn

j Þ, the former set of equations
can be expressed as a matrix form:

NlwK2bw
¼ K1KT

1bw
ð3Þ
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