
Learning mid-perpendicular hyperplane similarity from
cannot-link constraints

Shan Gao, Chen Zu, Daoqiang Zhang n

Department of Computer Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

a r t i c l e i n f o

Article history:

Received 14 September 2010

Received in revised form

4 December 2012

Accepted 12 January 2013

Communicated by S. Choi
Available online 28 February 2013

Keywords:

Mid-perpendicular hyperplane similarity

(MPHS)

Pairwise constraints

Semi-supervised

Kernel k-means

a b s t r a c t

Pairwise constraints known as must-link and cannot-link constraints have been frequently used in

semi-supervised clustering. In this paper, we propose a novel usage of cannot-link constraints and

develop a method called Mid-Perpendicular Hyperplane Similarity (MPHS) for semi-supervised cluster-

ing. Since a cannot-link constraint means that the two objects linked by it are not in the same class,

there is a mid-perpendicular hyperplane to distinguish them. For each cannot-link constraint, we first

compute the corresponding mid-perpendicular hyperplane and then use distances of objects to this

hyperplane to learn a new data representation and similarity matrix. Finally, we combine all the

similarity matrices from all cannot-link constraints into single similarity matrix and perform kernel

k-means on it to obtain the partition. We implement MPHS for two cases, i.e., a simple one performed in

original input space when the data set is nearly linear-separable, and an advanced one in kernel-

induced feature space when the data set is complex and nonlinear-separable. Experimental results on

several UCI data sets and some image data sets show the effectiveness of our method.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Semi-supervised learning which learns from both labeled and
unlabeled data has attracted considerable interests in recent years.
According to specific tasks, semi-supervised learning can be roughly
categorized into semi-supervised classification, semi-supervised
regression and semi-supervised clustering [21]. In this paper, we
focus on semi-supervised clustering with supervision information in
the form of pairwise constraints which specify whether two objects
belong to the same class or not, known as the must-link constraints
and the cannot-link constraints respectively. Especially, we are more
interested in cannot-link constraints and want to investigate its
values in improving clustering performances.

Considerable research has been proposed to use pairwise con-
straints for aiding clustering. Roughly speaking, there are three main
ways to use pairwise constraints in clustering: (1) constraints-based
[15,7], (2) distance-based [16,8,6] and (3) the hybrid methods [2], etc.
In the first category, pairwise constraints are used to guide the
clustering process. For example, Wagstaff et al. [15] proposed con-
strained K-means to make sure that there is no constraint-violation in
each iteration. Kulis et al. [7] get a unified form of kernel K-means and
formulated it as kernel matrix with pairwise constraints.

On the other hand, distance-based semi-supervised clustering
usually directly or indirectly (e.g., through dimensionality reduction

[14,19,18,5] or feature selection [20,13,17]) learns a distance metric.
A lot of recent methods for semi-supervised clustering belong to this
category. For example, Tang et al. [14] proposed a constraint-guided
feature projection to represent the original data in a low dimen-
sional space. Zhang et al. [19] developed a dimensionality reduction
method based on the idea that objects with cannot-link constraints
should come more far away while objects with must-link
constraints should be closer after the transformation. Xing et al.
[16] used pairwise constraints to learn a Mahalanobis distance
metric. Oyama et al. [12] used only cannot-link constraints to learn
a metric matrix, and applied it to name disambiguation problem.
Hoi et al. [6] use graph Laplacian to develop a nonparametric kernel
method, which is formulated into the SDP problem. Li et al. [8]
consider the problem of pairwise constraints propagation, and
formulated it into the SDP problem to learn a kernel matrix.
Furthermore, to overcome the computational problem, they also
proposed to adapt the spectral embedding to make it consistent
with the pairwise constraints [9,10]. More recently, Lu et al. [11] and
Baghshah et al. [1] proposed to use local geometry or topological
structure of data in pairwise constraints based metric learning.
Finally, besides the constraint-based and distance-based methods,
there also exit some hybrid methods which combine the
constraints-based and metric learning together [2].

In this paper, we consider a novel usage of cannot-link
constraints, which is inspired from the maximum margin hyper-
plane of SVM [4]. As we know, when a data set is linearly
separable, SVM searches the hyperplane that has the maximum
margin to reduce the structure risks. However, SVM needs class
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labels to train a classifier for getting such hyperplane. Instead, we
are concerned on how to get a similar hyperplane from pairwise
constraints.

Intuitively, pairwise cannot-link constraints provide a natural
way for getting such a hyperplane. Given two objects with a
cannot-link constraint, we can compute its mid-perpendicular
hyperplane which is perpendicular to the line across the two data
points. Obviously, for a data set with only two objects consisting a
cannot-link constraint, the maximum margin hyperplane of SVM
is also the mid-perpendicular hyperplane from the cannot-link
constraint. Since usually there are more than one cannot-link
constraints, we can obtain multiple mid-perpendicular hyper-
planes. Now the problem is how can we best use those mid-
perpendicular hyperplanes? To address that problem, in this
paper, we propose a novel method called Mid-Perpendicular

Hyperplane Similarity (MPHS), which first represents data with
distances to each mid-perpendicular hyperplane (gotten from
corresponding cannot-link constraint) and then learns a aggre-
gated similarity from those different representations. The main
advantages of the proposed MPHS method are listed as below.

(1) It provides a novel usage of pairwise cannot-link constraints,
i.e., representing data with distances to mid-perpendicular hyper-
planes gotten from cannot-link constraints. To the best of our
knowledge, this kind of study was not investigated previously.

(2) It can be used for semi-supervised clustering alone. We
have developed two variants of MPHS, i.e., MPHS-linear (for
simple and well-structured data) which is performed on original
data space and MPHS-Gauss (for complex data) which is
performed on Gaussian-kernel induced feature space.

(3) It can also be used for semi-supervised clustering together
with other similarity-based methods. Specifically, we have devel-
oped a variant of MPHS, i.e., MPHS-PCP which first learns a data-
dependent kernel similarity (PCP-kernel [8]) and then perform
MPHS in PCP-kernel induced feature space.

(4) The experimental results on a series of data sets show that
our method (MPHS-PCP) achieves better performances than
existing semi-supervised clustering methods. Moreover, MPHS
has a lower computational complexity compared with most semi-
supervised clustering methods.

The rest of this paper is organized as follows: in Section 2, we
introduce our MPHS methods in detail including MPHS-linear,
MPHS-Gauss and MPHS-PCP. Section 3 discuss the experimental
results on several real data sets. Finally, in Section 4, we conclude
this paper.

2. The MPHS method

In this section, we first describe the main idea of the proposed
MPHS method, and then derive the three variants, i.e., MPHS-
linear, MPHS-Gauss and MPHS-PCP. Among them, the former one
is for linear condition, while the latter two are for non-linear
condition. The difference between MPHS-Gauss and MPHS-PCP
lies in that the former uses the fixed Gaussian kernel, while the
latter learns a data-dependent kernel using PCP [11].

2.1. Main idea

Given a data set of n objects X ¼ fx1,x2, . . . ,xng, a must-link
constraint set M¼ fðxi,xjÞg, a cannot-link constraint set
C¼ fðxi,xjÞg, MPHS contains three main steps. First, it learns a
new data representation using the mid-perpendicular hyperplane
corresponding to each cannot-link constraint, which can also be
regarded as dimensionality reduction. Second, it learns individual
similarity matrix according to the new data representation
corresponding to each cannot-link constraint. Finally, the

individual similarity matrices are aggregated into a similarity
matrix and then perform kernel k-means [4] on it.

MPHS is formulated for two conditions. When the data set is
simple and well-structured (linearly separable), MPHS can be
applied directly on it. Otherwise, we use a (fixed or data-
dependent) kernel to transform data into high-dimensional fea-
ture space, where MPHS is then performed. For simplicity, here
we illustrate our idea for linear condition only. We first give the
definition of mid-perpendicular hyperplane as below.

Definition. Let xi and xj be two points in some space, w¼ xi�xj,
b¼ ðxiþxjÞ=2. The mid-perpendicular hyperplane determined by
xi and xj is a hyperplane that has w being its normal vector and
the point b on it.

Here we consider each mid-perpendicular hyperplane one by
one instead of directly combining them. Note that a cannot-link
constraint implies that the two objects are not in the same class,
and the mid-perpendicular hyperplane may distinguish between
them. Furthermore, we assume that this mid-perpendicular
hyperplane might also be a good hyperplane to distinguish the
two classes which the two objects respectively belong to. Given a
mid-perpendicular hyperplane, for any two data objects we
calculate the dissimilarity between them if they are at different
sides of the hyperplane and calculate the similarity if they are at
the same side.

To better illustrate our idea, let us consider the classification
task on a toy data set shown in Fig. 1. Suppose that the data set is
linear-separable. The line linking A(0.1,0.3) and B(0.7,0.9) is a
cannot-link constraint. L (y¼�xþ1) is the mid-perpendicular
hyperplane of A and B, such that all points are divided into two
parts. Then we make a projection that each point is projected on
the direction of vector AB, which can be obtained by calculating
the distances of all points to L (allow the negative distance). For
example, the distance of A to L is �0.4242, the distance of B is
0.4242, and that of C is �0.2121. Thus the dimensionality is
reduced to be one. We say the left-hand points are not similar
with the right-hand points, so we calculate the dissimilarity
between them, for example, the dissimilarity between B and C
can be �9�0:2121�0:42429¼�0:6363. On the other hand, we
calculate the similarity between points within the same parts of
the hyperplane, for example, the similarity between A and C can
be þ9�0:2121�ð�0:4242Þ9¼ 0:2121. Thus, we can get a similarity
matrix from this cannot-link constraint. Since there are more
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Fig. 1. A toy problem for illustration of how to use the mid-perpendicular

hyperplane of a cannot-link constraint.

S. Gao et al. / Neurocomputing 113 (2013) 195–203196



Download	English	Version:

https://daneshyari.com/en/article/409317

Download	Persian	Version:

https://daneshyari.com/article/409317

Daneshyari.com

https://daneshyari.com/en/article/409317
https://daneshyari.com/article/409317
https://daneshyari.com/

