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Abstract

This article presents the winning solution to the CATS time series prediction competition. The solution is based on classical optimal

linear estimation theory. The proposed method models the long and short term dynamics of the time series as stochastic linear models.

The computation is based on a Kalman smoother, in which the noise densities are estimated by cross-validation. In time series prediction

the Kalman smoother is applied three times in different stages of the method.
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1. Introduction

This article1 presents the winning solution to the time
series prediction competition, the CATS benchmark [17],
which was organized as a special session of the IJCNN
2004 conference. The solution is based on the classical
Kalman smoother with cross-validated process noise
variances. In addition to presenting the winning solution,
this article also discusses the connection of optimal filtering
to Bayesian inference, and to the Gaussian process
regression models used in Bayesian neural network
literature.

1.1. CATS benchmark

The goal of the CATS competition [17] was to provide
a new benchmark for the problem of time series prediction
and to compare different methods and models that can
be used for the prediction. The proposed time series is
the CATS benchmark (Competition on Artificial Time
Series).

This artificial time series with 5000 data was given.
Within those 100 values were missing. These missing values
were divided into 5 blocks

� elements 981–1000;
� elements 1981–2000;
� elements 2981–3000;
� elements 3981–4000;
� elements 4981–5000.

The purpose was to predict the 100 missing values based on
the other data. The performance criterion was the mean
square error, which was computed on the 100 missing
values. The time series is shown in Fig. 1.

1.2. Optimal linear filtering

The success of optimal linear filtering is mostly due to the
seminal article of Kalman [13], which describes a recursive
solution to the optimal discrete linear filtering problem.
Although the original derivation of the Kalman filter was
based on the least squares approach, the same equations
can be derived from pure probabilistic Bayesian analysis.
The Bayesian analysis of Kalman filtering is well covered in
the classic book by Jazwinski [12] and more recently in the
book by Bar-Shalom et al. [3].
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Kalman filtering, mostly because of its least squares
interpretation, has been widely used in stochastic optimal
control. A practical reason to this is that the inventor of
Kalman filter, Rudolph E. Kalman, has also made several
contributions [14] to the theory of linear quadratic Gaussian

(LQG) regulators, which are fundamental tools of stochas-
tic optimal control [19,27].

As discussed in the book by West and Harrison [32], in
the sixties, Kalman filter like recursive estimators was also
used in the Bayesian community and it is not clear whether
the theory of Kalman filtering or the theory of dynamic

linear models (DLM) was the first. Although these theories
were originally derived from slightly different starting
points, they are equivalent. Because of its useful connection
to the theory and history of stochastic optimal control, this
article approaches the Bayesian filtering problem from the
Kalman filtering point of view.

In the early stages of its history, the Kalman filter was
soon discovered to belong to the class of Bayesian
estimators [11], with the resulting generalized theory called
non-linear filtering theory [12]. An interesting historical
detail is that while Kalman and Bucy were formulating the
linear theory in the United States, Stratonovich was doing
the pioneering work on the probabilistic (Bayesian)
approach in Russia [12,29].

An optimal discrete filter, such as the Kalman filter,
solves the discrete-time filtering problem, which means that
the underlying physical phenomenon is modeled as a
discrete-time process. However, because Nature is contin-
uous, a physically more realistic approach is continuous-

discrete filtering [12], where state dynamics are modeled as
continuous-time stochastic processes, that is, stochastic

differential equations [16,23] and measurements are as-
sumed to be obtained at discrete time steps. The dynamic
model in this paper is also first designed as a continuous-
time process and then discretized to allow for consistent
prediction over intervals of varying length, that is, for non-
uniform sampling of measurements.

2. Optimal estimation

In this section we review the formulation of optimal
filtering and smoothing as recursive Bayesian estimation
and introduce the notation used in this article. The
equivalent formulation is used in classical estimation
theory and optimal filtering literature (e.g., [12]).
Optimal non-linear discrete-time estimation considers

generic state space models of the form

xk�pðxkjxk�1Þ,

yk�pðykjxkÞ, ð1Þ

where xk 2 Rn is the unknown hidden state and yk 2 Rm is
the measurement at time step k. The dynamic model
pðxkjxk�1Þ defines the Markov model for state transitions.
The measurement model pðykjxkÞ defines the distribution of
measurements for given state configurations. At the initial
time step k ¼ 0, the state is assumed to have the prior
distribution pðx0Þ.

2.1. The optimal filtering equations

The goal of filtering is to compute the posterior

distribution of the state xk at time step k given the history
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Fig. 1. The CATS benchmark time series. The purpose of the competition was to predict the missing data (marked with arrows) such that the mean

squared error is minimized.
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