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Abstract

We describe the use of ensemble methods to build models for time series prediction. Our approach extends the classical ensemble
methods for neural networks by using several different model architectures. We further suggest an iterated prediction procedure to select

the final ensemble members.
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1. Introduction

Ensemble building is a common way to improve the
performance of the resulting model for classification and
regression tasks, since it was noticed that an ensemble of
individual predictor performs better than a single predictor
in the average [6,10]. Usually an ensemble consists of
models taken from one single class, e.g. neural networks
[7,17,11,16], support vector machines [24] or regression
trees [2]. We suggest a different strategy. We train several
models from different model classes and combine them to
build the final ensemble. This is done in order to introduce
model diversity which is the central feature of the ensemble
approach [11]. The novelty of our approach consists of
building heterogeneous ensembles with several model
classes combined with an iterated prediction scheme for
final model selection. For the CATS Benchmark [13] we
propose a combined model strategy in order to cope with
the different timescales of the data set. In Section 3 we
present our investigation that leads to the assumption, that
the time series has two different timescales. We noticed that
other research groups had the same idea while dealing with
the CATS data set [19,3].
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2. Method of prediction

We build a simple polynomial model to cover the long
term oscillations and combine that with an ensemble model
for the small scale dynamics. In the following section we
like to introduce the ensemble approach that we used to
build the small scale model.

2.1. Ensembles

If we average the output of several different models f,(x),
we call it an ensemble model
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We further assume that the model weights @; sum to one
S K @i =1. The central feature of this method is its
generalization ability. The generalization error of the
ensemble is in general lower than the mean of the
generalization error of the single ensemble members [11].
This holds in general, independent of the model class.

It was shown by several authors, that the generalization
error of an ensemble model could be improved if the single
models on which averaging is done disagree and if their
output is uncorrelated [10,16]. This becomes obvious, if we
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investigate the expected generalization error

Err(x) = (%) — yI
and its bias/variance decomposition given by Geman
et al. [6]

Err(x) = > + (Bias(/; (x)))2 + Var(f (x)), 2)

where 62 is the variance of y given x. The variance term
could be decomposed in the following way:
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where the expectation is taken with respect to the data set
under investigation. The first sum in Eq. (3) marks the
lower bound of the ensemble variance and is the weighted
mean of the variances of the ensemble members. The
second sum contains the cross-terms of the ensemble
members and vanishes if the models are completely
uncorrelated [10]. This shows that the reduction in the
variance of the ensemble is related to the degree of
independence of the single models [16]. There are several
ways to introduce model diversity to the ensemble in order
to decorrelate the output of the individual ensemble
members. A general approach is to train various models
on selected subsets of the training data [11,2] or to initiate
the training algorithm with randomly chosen initial
conditions [16]. A different approach was recently intro-
duced by Bakker et al. [1], where the ensemble consists of
representative models that are selected by clustering the
model outputs. We introduce model diversity in such a
way, that we train several model classes on different subsets
of the training data, using a cross validation scheme. An
overview of the different model classes that we use for
ensemble building is given below. The implementation of
our ensemble approach together with a detailed description
can be found as a freely available toolbox in [15].

2.2. Linear and polynomial models

The d-dimensional linear model has the form

d
J(X)=ao+ Z a;ixi, “4)
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where ag is the offset. The coefficients are calculated with
the standard method for ridge regression (see Hastie et al.
[8] for a detailed description). The optimal ridge parameter
is evaluated by performing a cross-validation on the
training data. The polynomial model is given by
fx) = Zf;l a;pX), wherein the monoms have the form
subplot(3,1,2) and n; € N is the ith exponent. We use an
iterative term selection for the monoms, wherein we add
successively the terms to the polynomial model that
decrease the out-of-sample error on a subset of the training
data.

2.3. Nearest neighbor models

A k-nearest-neighbor model takes a weighted average
over those observations z; in the training set that are closest
to the query point X. This is,
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where Nj(X) denotes the k-element neighborhood of X,
defined in a given metric. Common choices are the L;, L,
and the L., metrics. To compensate for irrelevant input
dimensions, distances are computed using a weighted
metric:

D
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d(x,2) = <Z mi(x; — Zi)M> , 0<m;<1. (6)
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The vector of metric coefficients 77 is adapted by a Genetic
Algorithm. One vector of metric coefficients is an
individual of the population. The fitness value is assigned
to each individual according to its error on the training
data set.

2.4. Nearest trajectory models

The nearest trajectory model is based on a strategy for
time series prediction introduced by McNames [14]. It is
based on the assumption that the time series stems from a
dynamical system and the states can be reconstructed with
a time delay embedding, which is possible for a large class
of systems [20-22]. The nearest trajectory model looks for
the nearest trajectory segments in the reconstructed state
space instead of the nearest neighbors. The prediction is
done with a local linear model of the closest trajectory
points as described in [14]. The number of neighboring
trajectories is chosen randomly at the start of the training
algorithm to introduce model diversity.

2.5. Neural networks

We use a multilayer feed-forward neural network
(MLP: multi layer perceptron) with the tanh(X) as non-
linear element. In order to increase the ensemble
ambiguity, we initialize the weights with Gaussian dis-
tributed random numbers having zero mean and scaled
variances, following a suggestion of LeCun et al. [12].
The number of hidden layers is chosen at random to
be one or two and the numbers of neurons in also random
(3-9 neurons in the first layer, 4-32 in second layer).
We also use two different training procedures: a first
order training algorithm based on the Rprop Algorithm
[18] with the improvements given in [9]. The second
order training algorithm is a Levenberg-Marquart gra-
dient descent [12]. As regularization method we use the
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