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Abstract

This paper predicts the 100 missing values in the CATS Benchmark using a Time-Varying Coefficient Autoregressive Model

(TVCAR). The TVCAR model is an autoregressive model in which the coefficients vary smoothly with time. The model is fitted to the

first differences of the data by minimising the residual sum of squared, subject to certain restrictions that enable the gaps left by the

missing observations to be bridged. The path of each time-varying coefficient is initially described by a combination of cosine functions.

Later, the method is improved replacing the cosine specifications by piecewise polynomials.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In a constantly changing environment, stable equili-
brium systems are not often observed. Nevertheless,
smoothly evolving systems, in the short and medium term,
can be considered quasi-stable and they allow an approxi-
mated stable treatment.

For analysing smoothly evolving systems, it would be
appropriate to use non-stationary models capable of
absorbing the structural changes that can be observed in
such systems. This situation can be observed, for instance,
in long-term series, whose generating system has gently and
continuously evolved. A time-varying model can be
appropriate for fitting such series.

In empirical applications ‘‘many series show a non-
stationary behaviour (e.g. in economics or sound analysis)’’
[3]. The topics of Evolutionary Time Series Models and
Time-Varying Coefficients Models have already been dealt
with in specialised literature. Examples can be found in
[3,6,7,9–13,16]. A simple way to build time-varying models
is by using, as the starting point, a linear model whose
parameters are replaced by time functions with a number
of constants. This is a simple idea that is very often
employed in non-linear modelling techniques [19]. It is also

used in the analysis of time series and in signal processing
methods.
Fig. 1 shows that the original series is integrated from

another series ut, whose generating model is unknown. To
collect the useful information contained in such a series, a
model composed of a locally stationary part [3], plus white
noise has been fitted. When integrating, the accumulation
of the white noise part makes a random walk appear as an
abrupt trend similar to that observed in the data.
This paper recommends the use of an autoregressive

model (AR) [1,2,8] for the series ut, which is obtained by
differentiating the given data. In other words, it is a model
with the form:

ut ¼ g0 þ
Xp

i¼1

gjut�j þ �t,

with coefficients gj that vary smoothly with time. Therefore,
the coefficients will be functions of time t that will be
specified. The random perturbations et are non-correlated
random variables with a mean of zero and constant
variance. This type of model is given the name of ‘‘Time-
Varying Coefficient Autoregressive Model (TVCAR). This
non-linear model is fitted by minimising the residual sum of
squares (RSS) under four restrictions. The restrictions are
required in order to link the predicted values with the
adjacent observations. Thus, the predicted values from y981
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to y1000 must link the given values y980 and y1001, and
likewise for the second, third and fourth blocks.

At the outset, it has been necessary to reduce the data by
applying the backwards-difference operator to obtain the
series ut [14].

This paper is organised as follows: Section 2 describes
the method used for prediction. Section 3 provides the
results obtained on the initial values of the Benchmark.
Section 4 examines the results of Section 3, describing the
advantages and disadvantages of the current method.
Section 5 describes the improved method for prediction.
Section 6 applies the method to a new set of data and,
finally, Section 7 gives the conclusions.

2. Method for prediction

2.1. Exploratory data analysis

Fig. 1 shows a dispersion graph of the points (yt�1, yt)
which comprise consecutive data values. The model
yt ¼ yt�1+ut can be taken as an initial working hypothesis;
and efforts can be devoted to analysing the series ut, which
is represented in Fig. 2.

The Partial Autocorrelation Function (PACF) [14] can
be used in finding the order of an AR process to model the
differentiated data. Fig. 3a shows the estimated PACF
based on values from u2 to u980. The estimated PACF using
values from u1002 to u1980, from u2002 to u2980, from u3002 to
u3980 and from u4002 to u4980, are shown in Fig. 3b–e,
respectively. Graphs from Fig. 3a–e indicate the appro-
priate order for an AR process describing the data. They
suggest that a stationary time-invariant AR model of an

order of 16 as follows:

ut ¼ g0 þ
Xp

j¼1

gjut�j þ �t (1)

might be appropriate, where gj are real constants and et are
non-correlated random variables of mean zero and
constant variance.
However, a continuous evolution and fluctuation on the

PACF graph bars corresponding to this AR model is also
found, and this suggests that the model’s coefficients must
vary in time. It is known that the bar for the h order lag, in
the PACF graph, is the partial correlation coefficient
between the variables ut and ut�h. In turn, the relation
between ut and ut�j is defined in (1) by means of the
coefficient gj; both amounts are, therefore, related.1 More-
over, if the PACF estimations on the two consecutive
blocks of data for the same series are sufficiently different,
then the AR models that are fitted on the said blocks also
have to be different. That is, an AR model of constant
coefficients for the whole series would, in this case, be
inappropriate. The fluctuation observed among graphs
3a–3e leads us to suspect that an AR model of variable
coefficients would also be appropriate for ut.
In order to check whether this evolution over time is real

and not merely a random sample fluctuation, an AR(16)
model of constant coefficients has been fitted on each block
of 979 data points and the results have been ordered in a
table of 16 rows and 5 columns. Column j contains the
estimated coefficients of the AR(16) in block j, where j ¼ 1,
2, 3, 4, 5. This table is subjected to (see Appendix A) a two-
way ANOVA test [17]. It is found that the blocks
(columns) effect is highly significant (P-value ¼ 5.1E-5).
This demonstrates that there are significant differences
among the AR(16) models fitted on the five blocks. An
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Fig. 1. (yt�1, yt) pairs.
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Fig. 2. (ut ¼ yt�yt�1).

1A mathematical relation can be established between both if it is taken

into account that the Autocorrelation Function (ACF) verifies the

recurrence expression defined by the AR model (from which

the Yule–Walker relations are obtained) that allows us to calculate the

coefficients gj of the AR model from the ACF, and if the definition of the

PACF are based on the ACF [14,18].
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