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Abstract

Compared to normal learning algorithms, for example backpropagation, Kalman filter-based algorithm has some better properties,
such as faster convergence, although this algorithm is more complex and sensitive to the nature of noises. In this paper, extended Kalman
filter is applied to train state-space recurrent neural networks for nonlinear system identification. In order to improve robustness of
Kalman filter algorithm dead-zone robust modification is applied to Kalman filter. Lyapunov method is used to prove that the Kalman

filter training is stable.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Recent results show that neural network technique seems
to be very effective in identifying a broad category of
complex nonlinear systems when complete model informa-
tion cannot be obtained. Neural networks can be classified
as feedforward and recurrent ones [7]. Feedforward
networks, for example multilayer perceptrons (MLP), are
implemented for the approximation of nonlinear functions
in the right-hand side of dynamic model equations. The
main drawback of these neural networks is that the
weights’ updating do not utilize information on the local
data structure and the function approximation is sensitive
to the training data [l4]. Since recurrent networks
incorporate feedback, they have powerful representation
capability and can successfully overcome disadvantages of
feedforward networks [11]. Even though backpropagation
(BP) has been widely used as a practical training method
for neural networks, the limitations are that it may
converge very slowly, there exists local minima problem,
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and the training process is sensitive to measurement noise.
The stability of modified BP algorithm is proved in [22].
Gradient-like learning laws are relatively slow. In order
to solve this problem, many descendent methods in the
identification and filter theory have been proposed to
estimate the weights of neural networks. For example, the
extended Kalman filter is applied to train neural networks
in [1,8,12,18,20,21], they can give solutions of least-square
problems. Most of them use static neural networks,
sometimes the output layer must be linear and the hidden
layer weights are chosen randomly [3]. A faster conver-
gence with the extended Kalman filter is reached, because it
has fewer interactions [8]. However, the computational
complexity in each interaction is increased, it requires a
large amount of memory. Decoupling technique is used to
decrease computational burden [15], the decoupled Kal-
man filter with diagonal matrix P is similar to gradient
algorithm [7], but the learning rate is a time-varying matrix.
There are not so many stability analyses for Kalman
filter training, in spite of reported successful Kalman filter
applications. Guo [6] analyzed convergence and stability
properties of the Kalman filter for linear stochastic time-
varying regression models. Reif et al. [16] proved that the
estimation error of Kalman filter remains bounded if the
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system satisfies a detectability condition. Reif and Un-
behauen [17] stated that the Kalman filter is exponentially
stable when the covariance P is bounded and filter error is
small enough, these conditions are very hard. Ghaoui [4]
presented a new approach to finite-horizon guaranteed
state prediction for discrete-time systems affected by
bounded noise and unknown-but-bounded parameter
uncertainty. There are only a few published results on
stability analysis of neural networks training with Kalman
filter. Nishiyama and Suzuki [13] used H-learning to
improved the robustness of Kalman filter training. By
using results on stochastic stability of Kalman filter,
Alessandri et al. [1] analyzed the convergence of the
weights of neural networks with the assumption of the
covariance Pj being bounded. The lack of robustness in
Kalman filter with respect to noise was demonstrated in
[13]. Several robust modification techniques were proposed
for the least-square algorithm [5] which is the special cases
of Kalman filter.

In this paper the extended Kalman filter is modified
with dead-zone technique, and is applied for state-space
recurrent neural networks training. Both hidden layers and
output layers can be updated. Stability analysis of
identification error with the Kalman filter algorithm is
given by the Lyapunov stability technique. A simple
simulation gives the effectiveness of the suggested
algorithm.

2. Recurrent neural networks training with extended Kalman
filter

Consider the following unknown discrete-time nonlinear
system:

x(k + 1) = fx(k), u(k), (1)

where u(k) € R™ is the input vector, |u(k)|*> <7, x(k) € R" is
a state vector, u(k) and x(k) are known. f'is an unknown
general nonlinear smooth function f € C*. We use the
following state-space recurrent neural network to identify
the nonlinear plant (1):

Xk + 1) = AX(k) + Vi,0[W11x(k)] + Var [ Wanx(k)u(k),

(2)
where X(k) € R" represents the internal state of the neural
network . The matrix 4 € R™" is a stable matrix. The
weights in output layer are Vg, Vor € R, the weights
in hidden layer are Wy, Wyr € R™", ¢ is m-dimension

vector function ¢ = [o]---0,]", ¢(-) is R™" diagonal
matrix,

ol Wi rx(k)] = [ (Z wi 1,/x]> 02 (Z Wum)

T
n
Om § W1,m,jXj 5
j=1

OIW 2 i x(k)u(k) = [‘151 (Z w2 1,/X/> U1, ¢, (Z w2 21xf>
" T
XUryoun, ¢m (Z W2,m,/‘xj> um] s (3)
j=1

where ¢; and ¢; are Sigmoid functions. According to the
Stone—Weierstrass theorem and density properties of
recurrent neural networks [11], the unknown nonlinear
system (1) can be written in the following form:

x(k + 1) = Ax(k) + Vi ko[ W1 x(k)]
+ Vo[ Wi x(l)u(k) — n(k), 4)

where  n(k) = fx(k), u(k)] — Ax(k) — Vi xo[Wiix(k)] —
Vo[ Warx(k)u(k) is modeling error with respect to the
weights Vi, Vaog, Wig and Wyy; they are time-varying
weights which will be updated by identification error. By
[11] we know that the term 5(k) can be made arbitrarily
small by simply selecting appropriate the number of
neurons in the hidden layer (in this paper, it is 7). In the
case of two independent variables, a smooth function f has
the following Taylor series expansion:

f= Zk' [(Xl

where ¢ is the remainder of the Taylor formuld If we let x|
and x, correspond to W ,x(k) and Vg, xl, x2 correspond
to W(l)x(k) and VY, and define W, =Wk — Wl,
Vik=Vix— V1= then we have

V1ol W x(k)] = Vie[Wx(k)] + @1 4By + &1, (6)

where V9, V5, W9 and W are set of known initial constant
weights, Bj; = [o— a VX" e R, @1 = [V W
€ R™™ ¢ is the derlvative of nonlinear activation
function o(-) with respect to W x(k), the definition of
(3), ¢’ € ™. Similarly

Vo g I Wopx()u(k) = V[ WIx(k)u(k) + @24 By + &2,
(7
where By = [du, ¢’ dlag(u)V kx(k)] Or =[Vak, W{k]T.

We define the modeling error {(k) = ¢ + &, — n(k); sub-
stituting (6) and (7) into (4) we have

+ (x2 — x2) f +e, ®)

y(k) = B} Oy + ((k), ®)
where
O1x
O = @2,]( = [Vl,ky W{k’ V2,k’ W{k]T’
By
Bi=|p . =[o,0' V] x, du, ¢ diag () V3 x(k)]",
2,

the output y(k) is
(k) = x(k + 1) = Ax(k) — VoW {x(k)]
— VG Sx(h)Juk).
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