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a b s t r a c t

In this paper, we introduce the adaptive natural gradient method into the multilayer perceptrons (MLPs)
and radial basis function (RBF) networks. We give a good performance for the Mackey–Glass chaotic
time series prediction, and compare it with the LMA. Results show that the adaptive natural gradient
methods for MLPs and RBFs, which are the online learning, can give almost the same performance with
the LMA (MLPs), which is the batch mode learning. However, the performance of LMA (RBFs) is very poor
and is very sensitive with the initial parameters.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Natural gradient algorithm gives an on-line learning algorithm
that takes the Riemannian metric of the parameter space into
account [1,2]. It adopts the on-line learning mode. As is known to
all on-line learning uses a training example once when it is
observed, while batch learning stores all the examples and every
example can be reused later. Therefore, the performance of the on-
line learning is worse than batch learning. However, Amari shows
that natural gradient algorithm achieves Fisher efficiency. It may
obtain the Cramer–Rao bounds and gives the best asymptotic
performance that any unbiased learning algorithm can achieve [1].

However, it is difficult to calculate the Fisher information
matrix of multilayer perceptrons (MLPs). Even when it is obtained,
its inversion is computationally expensive. Yang and Amari gave
an explicit form of the Fisher information matrix for the MLPs [2].
Rattray et al. gave it in terms of statistical–mechanical order
parameters [3]. As for the radial basis function (RBF) networks,
Zhao et al. gave the explicit form of the Fisher information matrix
[4]. These results show that it is difficult to implement natural
gradient learning for practical large-scale problems, although it
may give a good performance.

As a kind of nonlinear fitting problems, the Mackey–Glass
chaotic time prediction has attracted more and more attentions
[4–11]. As is known to all, the Mackey–Glass series is generated by

the following nonlinear time delay differential equation:

dxðtÞ
dt

¼ βxðt�τÞ
1þxnðt�τÞ þγxðtÞ; ð1Þ

where β, γ, τ, n are real numbers. Depending on the values of the
parameters, this equation displays a range of periodic and chaotic
dynamics. Such a series has some short-range time coherence, but
long-term prediction is very difficult. Although lots of the litera-
tures about the Mackey–Glass fitting have arisen, almost all of
them use the batch mode learning.

Many people want to know how to implement the natural
gradient algorithm into the Mackey–Glass chaotic time prediction.
In this paper, We will introduce the adaptive natural gradient
algorithm for the MLPs and RBFs. They will give a good perfor-
mance for the Mackey–Glass chaotic time prediction, and get
almost the same performance with the Levenberg–Marquardt
algorithm (LMA), which is a batch mode learning [12–14].

The rest of the paper is organized as follows. In Section 2, we
will introduce the adaptive natural gradient method. Section 3 will
give the adaptive natural gradient method for MLPs and RBFs.
Mackey–Glass chaotic time prediction will be given in Section 4.
Section 5 is the conclusions and discussions.

2. The adaptive natural gradient method

Considering a feedforward network, its input–output behavior
is depicted as follows:

y¼ f ðx;θÞþξ; ð2Þ
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where xARn is the input vector and yAR1 is the output; θ is the
parameter that specialize the network; ξ is a random noise whose
probability density function (pdf) is p(x).

The loss function is lðyjx;θÞ, which is the logarithm of the
conditional probability density function pðyjx;θÞ, then the Fisher
information matrix is depicted as follows [1]:

G¼ Ex � pðxÞ½Ey � pðyjx;θÞ
∂lðyjx;θÞ

∂θ
∂lðyjx;θÞ

∂θT

� �
: ð3Þ

Given the training samples ðx1; y1Þ; ðx2; y2Þ;…; ðxL; yLÞ, the nat-
ural gradient method is

θtþ1 ¼ θt�ηtG
�1ðθÞ∂lðyt jxt ;θÞ

∂θt
; ð4Þ

where ηt is the learning rate.
According to the definition of the Fisher information matrix, we

have to know the pdf of the input x, which is hardly given in
practical problems. Amari [1] and Zhao [4] had given the explicit
expressions of the Fisher information matrix for MLPs and RBFs
respectively [1,4]. However, when the number of the hidden units
is large, the computation of the Fisher information matrix and its
inverse is very difficult. Sometimes the inverse of the Fisher
information matrix does not exist.

Amari gives the adaptive gradient method for MLPs by using
the well known technique of the Kalman filter. It can obtain the
inverse of the Fisher information matrix directly, as depicted as
follows:

G�1
tþ1 ¼ ð1þϵtÞbG �1

t �ϵt bG �1
t � ∂f ðθÞ

∂θt
� ∂f ðθÞ

∂θT
t

bG �1
t ; ð5Þ

where ϵt is a time-dependent learning rate. We usually select ϵt ¼
c=t and ϵt ¼ ϵ.

3. Adaptive natural gradient method for MLPs and RBFs

3.1. Adaptive natural gradient method for MLPs

Let us consider a multilayer perceptron (MLP) written as

y¼
Xm
i ¼ 1

viφðωT
i � xþbαÞþb0þξ; ð6Þ

whereωi ¼ ðω1i;ω2i;…;ωniÞT is an n-dimensional connectionweight
vector from the input to the ith hidden unit ði¼ 1;2;…;mÞ, φðxÞ ¼
1=ð1þe�xÞ is a sigmoidal activation function. The MLPs can be
depicted in Fig. 1.

We know

f ðx;θÞ ¼
Xm
i ¼ 1

viφðωi � xþbαÞþb0; ð7Þ

where θ¼ ðωT
1;…;ωT

m; v1;…; vmÞT ARðnþ1Þm.

Derivatives of f ðx;θÞ with respect to θ are

∂f ðx;θÞ
∂θ

¼

v1φðω1 � xÞð1�φðω1 � xÞÞ � x
⋮

vmφðωm � xÞð1�φðω2 � xÞÞ � x
φðω1 � xÞ

⋮
φðωm � xÞ

2
6666666664

3
7777777775
; ð8Þ

so we can get the inverse of the Fisher information matrix directly
by the following formula:

G�1
tþ1 ¼ ð1þϵtÞbG�1

t �ϵt bG�1
t � ∂f ðθÞ

∂θt
� ∂f ðθÞ

∂θT
t

bG�1
t ; ð9Þ

where

∂f ðθÞ
∂θt

� ∂f ðθÞ
∂θT

t

¼

v1φðω1 � xÞð1�φðω1 � xÞÞ � x
⋮

vmφðωm � xÞð1�φðωm � xÞÞ � x
φðω1 � xÞ

⋮
φðωm � xÞ

2
6666666664

3
7777777775

v1φðω1 � xÞð1�φðω1 � xÞÞ⋯ vmφðωm � xÞ�
�ð1�φðωm � xÞÞ � xφðω1 � xÞ⋯φðωm � xÞ� ð10Þ

The adaptive natural gradient method for MLPs [15] is

θtþ1 ¼ θt�ηtG
�1ðθÞ∂lðyt jxt ;θÞ

∂θt
: ð11Þ

3.2. Adaptive natural gradient method for RBFs

As the radial basis function (RBF) networks are concerned, the
input–output relation can be written as

y¼
Xm
i ¼ 1

viφðx;ωiÞþξ; ð12Þ

where ωi ¼ ðω1i;ω2i;…;ωniÞT is the center of the ith hidden unit
ði¼ 1;2;…;mÞ, φðx;ωÞ ¼ exp� Jx�ω J 2=2 is the Gaussian activation
function. We know

f ðx;θÞ ¼
Xm
i ¼ 1

viφðx;ωiÞ; ð13Þ

where θ¼ ðωT
1 ;ω

T
2;…;ωT

m; v1;…; vmÞT ARðnþ1Þm.
Derivatives of f ðx;θÞ with respect to θ are

∂f ðx;θÞ
∂θ

¼

v1φðx;ω1Þðx�ω1Þ
⋮

vmφðx;ωmÞðx�ωmÞ
φðx;ω1Þ

⋮
φðx;ωmÞ

2
6666666664

3
7777777775
; ð14Þ

so we can get the inverse of the Fisher information matrix directly
by the following formula:

G�1
tþ1 ¼ ð1þϵtÞbG�1

t �ϵt bG�1
t � ∂f ðθÞ

∂θt
� ∂f ðθÞ

∂θT
t

bG�1
t ; ð15Þ

where

∂f ðθÞ
∂θt

� ∂f ðθÞ
∂θT

t

¼ ∂f ðx;θÞ
∂θ

¼

v1φðx;ω1Þðx�ω1Þ
⋮

vmφðx;ωmÞðx�ωmÞ
φðx;ω1Þ

⋮
φðx;ωmÞ

2
6666666664

3
7777777775

Fig. 1. Two multilayer perceptrons.
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