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a b s t r a c t

Medical image fusion plays an important role in clinical applications such as image-guided surgery,
image-guided radiotherapy, noninvasive diagnosis, and treatment planning. The main motivation is to
fuse different multimodal information into a single output. In this instance, we propose a novel
framework for spatially registered multimodal medical image fusion, which is primarily based on the
non-subsampled contourlet transform (NSCT). The proposed method enables the decomposition of
source medical images into low- and high-frequency bands in NSCT domain. Different fusion rules are
then applied to the varied frequency bands of the transformed images. Fusion coefficients are achieved
by the following fusion rule: low-frequency components are fused using an activity measure based on
the normalized Shannon entropy, which essentially selects low-frequency components from the focused
regions with high degree of clearness. In contrast, high-frequency components are fused using the
directive contrast, which essentially collects all the informative textures from the source. Integrating
these fusion rules, more spatial feature and functional information can be preserved and transferred into
the fused images. The performance of the proposed framework is illustrated using four groups of human
brain and two clinical bone images from different sources as our experimental subjects. The experi-
mental results and comparison with other methods show the superior performance of the framework in
both subjective and objective assessment criteria.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

To support more accurate clinical information to physicians for
better diagnosis, multimodal medical images are needed, such as
X-ray, computed tomography (CT), magnetic resonance imaging
(MRI), and magnetic resonance angiography (MRA). Medical image
fusion helps physicians to extract features from different modal-
ities that may not be normally visible in the images. For example,
the CT image can show dense structures like bones and implants
with less distortion, but it cannot detect physiological changes,
while the MR image can provide normal and pathological soft
tissues information, but it cannot support the bones information
[1]. Even a single modality can provide complementary and
occasionally conflicting information due to its dependence on
variable parameters. For instance, T1 weighted MR imaging gives
enhanced detail of anatomical structures whereas T2 weighted MR
imaging gives greater contrast between normal and abnormal
tissues. Therefore, only one kind of multimodal image may not be

sufficient to provide accurate clinical requirements to the physi-
cians [1].

So far, many image fusion frameworks have been proposed in
the literature [2–9] with some specific for multimodal medical
image fusion [10–21]. These frameworks can be broadly classified
into three categories based on the stage at which the combination
mechanism takes place. This characterization includes pixel-level
or sensor-level, feature-level, and decision-level fusion [2]. Among
these, the most popular framework is pixel-level fusion due to the
advantage of containing the originally measured quantities, easy
implementation and computationally efficient [7]. Hence, in this
paper, we concentrate our efforts on pixel level-fusion, and the
terms image fusion or fusion are intently used for pixel level fusion
throughout the paper. The well-known pixel-level frameworks are
based on principal component analysis (PCA), independent com-
ponent analysis (ICA), gradient pyramid (GP) filtering, etc. [22–25].
These approaches are not fully suitable for the application of
medical image fusion since the features are sensitive to the human
visual system existing in different scales [12]. Therefore, a multi-
scale or multiresolution analysis is more suitable for the fusion
purposes. With the development of multiresolution analysis,
wavelet transform has been identified as an ideal method for
fusion. However, it is argued that wavelet decomposition is good
at isolated discontinuities, but with a poor performance at edges
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and textured regions. Further, it captures limited directional
information along vertical, horizontal and diagonal directions
[13]. These issues are rectified in a recent multiscale decomposi-
tion, namely contourlet and its non-subsampled version. Contour-
let is a “true” 2-D sparse representation for 2-D signals like images
where sparse expansion is expressed by contour segments. As a
result, it can capture 2-D geometrical structures in visual informa-
tion much more effectively than the traditional multiscale meth-
ods [26]. In contrast, NSCT inherits all the advantages of contourlet
transform along with shift-invariance property and effectively
suppressing pseudo-Gibbs phenomena. Hereafter, some authors
have proposed image fusion framework using NSCT [17–21].
Among these, most of the frameworks are implemented in multi-
focus fusion. If implemented for medical imaging, the results are
not of the same quality as those for the multimodal medical image
fusion. The main reason is the structure of medical images. Due to
this fact, traditional fusion rules such as weighted average,
absolute maximum, spatial frequency and saliency do not effi-
ciently utilize prominent information present in the low- and
high-frequency coefficients and result in the poor quality [21].
Therefore, two new fusion rules are proposed in this work to
address these issues.

In this paper, a fully automated framework for medical image
fusion is proposed in the non-subsampled contourlet transform
(NSCT) domain. After the source images are decomposed by the
NSCT, the coefficients of the low- and high-frequency portions are
fused using two different fusion processes, which are chosen
considering the physical meaning of the coefficients. Therefore,
the coefficients of the low- and high-frequency bands are treated
differently: the former is selected with an activity measurement
process, and the latter is selected by a contrast based process. The
fused image is then obtained by taking inverse NSCT transform on
the fused low- and high-frequency coefficients. Both qualitative
and quantitative performance evaluations are carried out to
validate the proposed framework. The final fused images are
obtained by applying inverse NSCT on the fused low- and high-
frequency coefficients. Extensive experiments on different multi-
modal CT/MRI and MR-T1/MR-T2 data-sets are carried out along
with two clinical examples. Performance comparison of the
proposed framework with the existing methods demonstrates
the efficiency of the proposed method.

The rest of the paper is organized as follows. The NSCT is
described in detail in Section 2 followed by the introduction of
multimodal medical image fusion framework in Section 3. Experi-
mental results and discussion are given in Section 4 and the
concluding remarks are presented in Section 5.

2. Non-subsampled contourlet transform (NSCT)

NSCT based on the theory of countourlet transform (CT) is a
kind of multi-scale and multi-direction computation framework of
the discrete images [26]. It can be divided into two phases
including non-subsampled pyramid (NSP) and non-subsampled
directional filter bank (NSDFB). The former phase ensures the
multiscale property by using two-channel non-subsampled filter
bank, producing one low-frequency and one high-frequency image
at each NSP decomposition level. Subsequent NSP decomposition
stages are carried out to decompose the available low-frequency
component iteratively to capture the singularities in the image. As
a result, NSP results in kþ1 sub-images, which consist of one low-
and k high-frequency images having the same size as the source
image where k denotes the number of decomposition levels. Fig. 1
(a) shows the NSP decomposition with k¼3 levels. The NSDFB is
two-channel non-subsampled filter bank which is constructed by
combining the directional fan filter banks. NSDFB allows the

direction decomposition with l stages in high-frequency images
from NSP at each scale and produces 2l directional sub-images
with the same size as the source image. Therefore, NSDFB offers
the NSCT with the multi-direction property and provides us with
more precise directional details information. A four channel
NSDFB constructed with two-channel fan filter banks is illustrated
in Fig. 1(b).

3. Proposed multimodal medical image fusion framework

The proposed framework realizes on a new definition of the
directive contrast in NSCT domain, which takes a pair of source
image denoted by A and B to generate a composite image F. The
basic condition in the proposed framework is that all the source
images must be registered in order to align the corresponding
pixels. The definition of the directive contrast and the proposed
fusion framework are described below.

3.1. Directive contrast in NSCT domain

The contrast feature measures the separation between the
intensity values of a pixel and its neighboring pixels. The human
visual system is highly sensitive to the intensity contrast rather
than the intensity value itself. Generally, the same intensity value
looks like a different intensity value depending on intensity values
of neighboring pixels. Therefore, local contrast is developed and is
defined as [27]

C ¼ L�LB
LB

¼ LH
LB

ð1Þ

where L is the local luminance and LB is the luminance of the local
background. Generally, LB is regarded as local low-frequency and
hence, L�LB ¼ LH is treated as local high-frequency. This definition
is further extended as directive contrast for the multimodal image
fusion. These contrast extensions take high-frequency as the pixel
value in multiresolution domain. However, considering single
pixel is insufficient to determine whether the pixels are from clear
parts or not. Therefore, directive contrast is integrated with the
sum-modified Laplacian [28] to get salient features.

In general, the larger absolute values of high-frequency coeffi-
cients correspond to the sharper brightness in the image and lead
to the salient features such as edges, lines, and region boundaries.
However, these are very sensitive to the noise, which can be taken
as the useful information and leading to misinterpretation of the
actual information in the fused images. Hence, a proper way to
select high-frequency coefficients is necessary to ensure better
information interpretation. The sum-modified Laplacian is inte-
grated with the directive contrast in NSCT domain to produce
accurate salient features. Mathematically, the directive contrast in
NSCT domain is given by

Dl;θði; jÞ ¼
SMLl;θði; jÞ

Ilði; jÞ
if Ilði; jÞa0

SMLl;θði; jÞ if Ilði; jÞ ¼ 0

8><
>: ð2Þ

where SMLl;θ is the sum-modified Laplacian of the NSCT frequency
bands at scale l and orientation θ. On the other hand, Ilði; jÞ is the
low-frequency sub-band at the coarsest level (l). The sum-
modified Laplacian is defined by the following equation:

SMLl;θði; jÞ ¼
Xiþm

x ¼ i�m

Xjþn

y ¼ j�n

∇2
l;θIðx; yÞ ð3Þ

where

∇2
l;θIði; jÞ ¼ j2Il;θði; jÞ� Il;θði�step; jÞ� Il;θðiþstep; jÞj

þ j2Il;θði; jÞ� Il;θði; j�stepÞ� Il;θði; jþstepÞj ð4Þ
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