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a b s t r a c t

This paper is concerned with the H1 model approximation problem for a class of discrete-time Takagi–
Sugeno (T–S) fuzzy Markov jump systems. The systems involve stochastic disturbances and nonlinea-
rities that can be described by T–S fuzzy models. The problem to be solved in the paper is to find a
reduced-order model, which is able to approximate the original T–S fuzzy Markov jump system with
comparatively small and acceptable errors. Specifically, the corresponding error system is guaranteed to
be asymptotically stable in the mean square with a prescribed H1 performance index. By using convex
optimization approach and projection approach, respectively, sufficient conditions on the existence for
such model with reduced-order are obtained and presented in the form of linear matrix inequalities.
Finally, a numerical example is provided to demonstrate the effectiveness of the obtained results.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

It is constantly encountered that many practical engineering
systems, regardless of the fields of their applications, are characterized
by mathematical models with relatively high order, which will
inevitably introduce difficulty and computational complexity to sta-
bility analysis, synthesis and simulation [1,2]. Therefore, an effective
solution to the underlying problem is to reduce the order of the
system models to a comparatively low order. Thus, model approxima-
tion for engineering systems is playing a significant role in the process
of control system analysis and design. Given a full-order engineering
system, the objective in terms of model approximation is to achieve a
new model with reduced order that is able to approximate the ori-
ginal system such that the errors are small and acceptable. In order to
achieve these goals, effective approaches have been proposed, such as
the aggregation method [3], the optimal Hankel norm approximation
method [4], and the balanced truncation method [5]. During the past
several decades, much attention has been paid on model reduction for

different kinds of systems, such as switched hybrid systems [2,6],
Markov systems [7] and fuzzy systems [8].

On the other hand, great importance has been attached to the
areas in terms of practical engineering systems with switching dyna-
mics during the past several decades. These systems may experience
inevitable changes or disturbances, such as unpredictable environ-
mental changes, random component failures or other influences
brought by interactions of subsystems [9]. The aforementioned
systems that involve stochastic mode transitions can be represented
by Markov jump systems, which have been considered to be a freq-
uently addressed topic due to the widely practical applications in
terms of power engineering systems, communication systems, irriga-
tion systems, aerospace engineering, networked control systems and
other manufacturing systems [7,10–13]. Involving stochastic processes,
Markov jump systems are hybrid in essence, in which the continuous
and discrete dynamics are, respectively, described by a series of
differential equations and Markov chains to govern the transitions
among each subsystem [14]. The phenomenon is known as a stoc-
hastic behaviour, which makes Markov systems vastly different from
other kinds of hybrid systems, such as the nondeterministic switched
systems. Markov jump system has attracted much attention mainly
because of its promising prospect in many application areas. For
instance, it can be adopted to describe the abrupt phenome-
non such as random failures, repairs of the components and sudden
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environmental changes [13]. So far, many significant results on the
stability analysis, filter design, optimal control, robust control, model
reduction and other issues for Markov jump linear systems (MJLSs)
have been obtained, such as [7,15–18], and the references therein.

Compared to the literatures on MJLSs, fewer papers can be found
on control issues for Markov jump nonlinear systems (MJNSs) due to
the complexity generated from the nonlinear dynamics. However, the
problems in terms of MJNSs are of vital importance and should be
combated successfully because nonlinear systems are ubiquitously
found in chemical process, power engineering systems, robotic syst-
ems, automotive systems, and many other manufacturing systems [8].
Problems on approximating nonlinear systems with acceptable errors
were deeply investigated. Due to the nature of high efficiency, the T–S
fuzzy system has become very important for the analysis and
synthesis of complex nonlinear systems [19]. The work on stability
analysis and controller design for T–S fuzzy systems with complex
structures, time delay, disturbances, etc. So far, T–S fuzzy model has
presented excellent performance in facilitating stability analysis and
controller design [20,21], thus has attracted great attention. Some
typical results on the stability analysis and controllability of T–S fuzzy
systems are reported in [19,21–27]. Because of this advantage of the
T–S fuzzy model, the concept of fuzzy Markov jump systems (FMJSs)
was proposed and has attracted much attention during the past few
years. By utilizing a family of IF–THEN rules that represent local linear
input–output relations of each model of the MJNSs, the problem on
the nonlinear dynamics can be efficiently addressed. To name a few, a
robust H1 output feedback controller was designed in [28]. A mode-
basedmethod for FMJSs which can be found in [29] was proposed and
verified. Stability analysis and stabilization issues of discrete-time
FMJSs with time delays were investigated in [30,31]. A mode-
independent fuzzy controller design method was reported in [32].
The stability analysis and a novel controller design technique for
FMJSs was studied in [23], where slack variables were introduced to
separate Lyapunov matrices from system matrices. Note that though
the studies on control of FJMSs have been launched, the model
approximation issue has seldom been addressed, which motivates
us for this study.

In this paper, the problem of H1 model approximation for a class
of discrete-time FMJSs is studied. Specifically, both convex lineariza-
tion approach and projection approach are introduced to derive
sufficient conditions of the existence of the reduced-order model
and the corresponding solutions to system matrices of the reduced-
order model such that the resulting error system is said to be stoch-
astically stable with a guaranteed H1 performance index. Since the
results based on the projection approach are presented with the form
of LMIs with a non-convex constraint, cone complementary lineariza-
tion (CCL) is employed to cope with the sequential minimization issue.
Finally, a numerical example is presented to illustrate the validity and
effectiveness of the proposed model reduction approach. The rem-
ained part of the paper is organized as follows. In Section 2 the
formulation of the problems and preliminaries are presented. Main
results on H1 model reduction of FMJSs are presented in Section 4,
while simulation results are obtained in Section 5 to demonstrate the
effectiveness of the main results. Finally, the conclusion is drawn in
Section 6.

Notation: The notation used throughout this paper is fairly
standard. The subscripts “T” and “�1” stand for matrix transposition
and inverse, respectively. Rn denotes the n-dimensional Euclidean
space. The notation P40 means that P is real symmetric positive
definite. I and 0 represent identity matrix and zero matrix, respec-
tively. In symmetric block matrices or complexmatrix expressions, the
symbol “n” is used to represent an ellipsis for the terms that are
introduced by symmetry and diagf⋯g stands for a block-diagonal
matrix. J � J denotes the Euclidean norm of a vector and its induced
norm of a matrix. ‖ � ‖2 stands for the typical l2½0;1Þ norm while
‖ � ‖1 represents the l2-induced norm of a transfer function matrix or

a general operator. For a matrix UARm�n with rank k, we denote U?

as the orthogonal complement, which is possibly non-unique, such
that U?U ¼ 0. Uþ is defined as the Moore–Penrose inverse of the U,
and UL, UR are defined as any full rank factors of U, i.e. ULUR ¼ U.

2. Problem formulation and preliminaries

2.1. Physical plant

Consider the following discrete-time FMJSs.
Plant rule i: IF s1ðkÞ is μi1 and s2ðkÞ is μi2 and … and shðkÞ is μih,

THEN

xðkþ1Þ ¼ AiðrkÞxðkÞþBiðrkÞuðkÞ
yðkÞ ¼ CiðrkÞxðkÞþDiðrkÞuðkÞ

(
ð1Þ

where xðkÞARn is the state vector, uðkÞARp which belongs to l2½0;1Þ
is the input and yðkÞARq is the measured output; iAS¼ f1;2;…;wg,
w is the number of IF–THEN rules, μi1;μi2;…; μih is the fuzzy set, s1ðkÞ,
s2ðkÞ;…; shðkÞ are the premise variables; frkg is a discrete-time Markov
process that takes values in a finite set T¼ f1;2;…; gg with mode
transition probability matrix Ψ ¼ fπlmg that is listed as follows:

πlm ¼ Prðrkþ1 ¼mj rk ¼ lÞ

where πlm represents the transition probability from mode l at time k
to mode m at time kþ1, for all lAT, mAT, πlmZ0 andPg

i ¼ 1 πlm ¼ 1. The system matrices of different modes are denoted
by AiðrkÞ, BiðrkÞ, CiðrkÞ and DiðrkÞ, which are real known matrices with
appropriate dimensions.

For notational convenience, in the subsequent sections of this
paper, for rðkÞ ¼ l, lAT, we will denote the system matrices that
are related to the lth mode by Ail ¼ AiðrkÞ, Bil ¼ BiðrkÞ, Cil ¼ CiðrkÞ,
Dil ¼DiðrkÞ.

It is assumed that the premise variables are not dependent on the
input variables u(k). Then if given a pair of (x(k), u(k)), for any rðkÞ ¼ l,
lAT, the final model of the fuzzy Markov jump system in (1) can be
easily obtained as follows:

xðkþ1Þ ¼
Xw
i ¼ 1

hiðsðkÞÞfAilxðkÞþBiluðkÞg

yðkÞ ¼
Xw
i ¼ 1

hiðsðkÞÞfCilxðkÞþDiluðkÞg

8>>>>><
>>>>>:

ð2Þ

where

hiðsðkÞÞ ¼
viðsððkÞÞPw

i ¼ 1 viðsððkÞÞ
; viðsððkÞÞ ¼ ∏

h

f ¼ 1
μif ðsf ðkÞÞ

In (2), hiðsðkÞÞ is the fuzzy basis function, μif ðsf ðkÞÞ is the grade
membership of sf(k) in μif . Suppose viðsðkÞÞZ0 and

Pw
i ¼ 1 viðsðkÞÞ40

for all k. Therefore, we have hiðsðkÞÞZ0 and
Pw

i ¼ 1 hiðsðkÞÞ ¼ 1 for all k.
In this paper, we are interested in finding an effective method by

which the original system (2) can be accurately approximated by a
reduced-order mathematical model that is of the following structure:

x̂ðkþ1Þ ¼
Xw
i ¼ 1

hiðsðkÞÞfÂilx̂ðkÞþ B̂iluðkÞg

ŷðkÞ ¼
Xw
i ¼ 1

hiðsðkÞÞfĈ ilx̂ðkÞþD̂iluðkÞg

8>>>>><
>>>>>:

ð3Þ

where x̂ðkÞARt is the state vector of the reduced-order system with
ton, Âil, B̂il, Ĉ il and D̂il, for all lAT, are matrices with appropriate
dimensions that are of compatible manipulations. These matrices in
the reduced-order model are to be determined later.

By denoting ~xðkÞ9 ½xT ðkÞ x̂T ðkÞ�T , eðkÞ9yðkÞ� ŷðkÞ, we are able to
augment the model of (2) to include (3), the error system is
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