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Abstract

In coupled learning rules for principal component analysis, eigenvectors and eigenvalues are simultaneously estimated in a coupled

system of equations. Coupled single-neuron rules have favorable convergence properties. For the estimation of multiple eigenvectors,

orthonormalization methods have to be applied, either full Gram–Schmidt orthonormalization, its first-order approximation as used in

Oja’s stochastic gradient ascent algorithm, or deflation as in Sanger’s generalized Hebbian algorithm. This paper reports the observation

that a first-order approximation of Gram–Schmidt orthonormalization is superior to the standard deflation procedure in coupled

learning rules. The first-order approximation exhibits a smaller orthonormality error and produces eigenvectors and eigenvalues of better

quality. This improvement is essential for applications where multiple principal eigenvectors have to be estimated simultaneously rather

than sequentially. Moreover, loss of orthonormality may have an harmful effect on subsequent processing stages, like the computation of

distance measures for competition in local PCA methods.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In the wake of the initial contribution by Oja [9], a
plethora of learning rules for principal component analysis
(PCA) have been suggested. Several authors introduced
modifications of the original Oja rule where the learning
rate for the weight update is adjusted according to an
eigenvalue estimate, e.g. projection approximation sub-
space tracking [16], learning rules based on recursive least
square approaches [1,5,13,3], and the adaptive learning
algorithm [2]. A number of these ‘‘coupled’’ learning rules,
which simultaneously estimate eigenvectors and eigenva-
lues in a coupled system of equations, can be derived from
a common framework by applying Newton’s method to an
information criterion [8]. Coupled learning rules are known
to exhibit improved convergence, leading to better eigen-
vector estimates or requiring less training steps.

If more than one principal eigenvector has to be
estimated, some decorrelation method has to be applied.
The statement of Hornik and Kuan that hierarchical
decorrelation methods perform better than symmetrical
methods is still valid [4]; it is an additional advantage of
hierarchical methods that the resulting eigenvectors are
sorted with respect to the corresponding eigenvalues. A
number of hierarchical methods are descendants of the
Gram–Schmidt orthonormalization procedure. In these
methods, neurons are arranged in a chain, and the weight
modification of each chain element depends on the
previous stages in the chain. Unfortunately, the
Gram–Schmidt method has a complexity in the order of
nm2 if m principal eigenvectors of dimension n have to be
determined. Therefore, approximations of the Gram–Sch-
midt procedure have been introduced which reduce the
complexity to an order of nm. A first-order approximation
of the Gram–Schmidt method for small learning rates is the
basis of the stochastic gradient ascent algorithm suggested
by Oja and Karhunen [11,12]. The deflation principle
introduced by Sanger for his generalized Hebbian learning
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method can be interpreted as further step of approximation
[14,4,10]. Other attempts have been made to stick to full
Gram–Schmidt orthonormalization, but reduce the effort
by a factor of 2 by interlocking learning rule and
orthonormalization [6].

Approximations of the Gram–Schmidt procedure can
entail a severe loss of orthonormality in the later stages of
the chain, specifically when all neurons in the chain are
trained simultaneously. This affects the convergence speed
of the chain as a whole [6], and has a negative impact on
subsequent processing stages which rely on orthonorm-
ality. In local PCA approaches, for example, several PCA
networks may compete through a distance measure like the
Mahalanobis metric which is sensitive to deviations from
orthonormality in the weight vector set [7].

A dependency of the quality of eigenvector and
eigenvalue estimates on the specific deflation procedure
was noticed before in coupled learning rules [8]. In this
paper it is shown that the first-order approximation of the
Gram–Schmidt method is superior to the standard defla-
tion method in coupled learning rules, with respect to both
convergence and orthonormality error. A coupled multi-
neuron learning rule is derived from a general equation for
the first-order approximation. Moreover, the effect of
additional explicit weight vector normalization to unit
length is investigated. Plain Hebbian learning rules and
coupled Hebbian learning rules are briefly recapitulated in
Section 2. Section 3 describes Gram–Schmidt orthonorma-
lization, its first-order approximation, and deflation, and
derives specific equations for Hebbian and coupled
learning. The results on experiments with medium-dimen-
sional (n ¼ 64) and with high-dimensional image data
(n ¼ 16 384) are reported in Section 4. Results and
implementation issues are discussed in Section 5.

2. Plain and coupled Hebbian learning rules

To simplify the notation, only a single learning step is
considered. The m weight vectors before learning are
denoted as vk with k ¼ 1; . . . ;m, the weight modification as
mk, and the modified weights after the learning step (but
before orthonormalization) as wk, thus wk ¼ vk þmk. Note
that for the approximations described below, mk is
supposed to be small (as an effect of small learning rates).
In plain Hebbian rules, the weight change is defined as

mk ¼ gxxTvk ¼ gykx, (1)

where x is the input vector, yk ¼ vTkx is the output value of
neuron k in the chain, and g is the small learning rate.
Thus, the modified weight vector is obtained from

wk ¼ vk þ gykx. (2)

In coupled Hebbian rules, a modification of Hebbian rules,
the learning rate g is divided by the current eigenvalue
estimate lk

mk ¼ gl�1k xxTvk ¼ gl�1k ykx (3)

leading to the update equation

wk ¼ vk þ gl�1k ykx. (4)

Here, the eigenvalue estimate lk is a temporal average of y2
k

obtained by a low-pass filter [8]; the eigenvalue estimate of
the next time step l0k is computed from

l0k ¼ lk þ gðy2
k � lkÞ. (5)

3. Orthonormalization methods

From the modified weight vectors wk, exact Gram–Sch-
midt orthonormalization produces an orthonormal version
uk, while in the two approximations, we use ûk instead to
indicate that the vectors are only approximately orthonor-
mal. The weight vectors of the next learning step v0k are
either obtained by directly assigning the orthonormalized
vector

v0k ¼ uk or v0k ¼ ûk (6)

or by assigning a vector normalized to unit length

v0k ¼ ûk=kûkk. (7)

Note that all weight vectors are updated simultaneously.

3.1. Gram–Schmidt orthonormalization

In this notation, Gram–Schmidt orthonormalization can
be written as

u�k ¼ wk �
Xk�1
j¼1

ðuTj wkÞuj ; uk ¼
u�k
ku�kk

. (8)

The computational complexity is proportional to nm2,
where n is the complexity of all vector operations (scalar
product, sum, normalization) while the factor m2 results
from the sum in (8) which has to be recomputed for each
weight vector index k.

3.2. First-order approximation

For arbitrary learning rules, the first-order approxima-
tion of Eq. (8) derived by Oja and Karhunen [11,12] is
given by

ûk ¼ vk þmk �
Xk�1
j¼1

ðvTj mk þ vTkmjÞvj � vTkmkvk. (9)

The validity of this approximation can be proven by
induction under the assumption that quadratic products of
components of vectors mi and mj almost vanish. Further-
more, it is assumed that the previous weight vectors vk are
close to orthonormality, thus vTi vj � dij (with dij denoting
Kronecker’s delta). Also the weight vector normalization in
Eq. (8) is approximated to the first order.
It is not visible how Eq. (9) would in general reduce the

effort compared to a Gram–Schmidt orthonormalization
since still there is a sum which has to be determined anew
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