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From outliers to prototypes: Ordering data
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Abstract

We propose simple and fast methods based on nearest neighbors that order objects from high-dimensional data sets from typical

points to untypical points. On the one hand, we show that these easy-to-compute orderings allow us to detect outliers (i.e. very untypical

points) with a performance comparable to or better than other often much more sophisticated methods. On the other hand, we show how

to use these orderings to detect prototypes (very typical points) which facilitate exploratory data analysis algorithms such as noisy

nonlinear dimensionality reduction and clustering. Comprehensive experiments demonstrate the validity of our approach.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Exploratory data analysis tries to find simple representa-
tions of high-dimensional data that best reflect the under-
lying structures. There are few robust methods that can be
used for this purpose in high dimensions. In fact, most real-
world data sets are spoiled by outliers arising from many
different processes, e.g. measurement errors or miss-labeled
samples. So it is necessary to remove outliers from the data
to avoid erroneous results.

In the statistics literature, a large emphasis is put on the
problem of outlier detection in univariate data [2,18]. In
univariate data the objects are trivially ordered, which
eliminates the problem of finding a one-dimensional
measure for characterizing the typicality of an object.
The main challenge is then to decide where to set the

threshold to distinguish between genuine and outlier
objects.
For the problem of outlier detection in multivariate

data, more complicated models have to be applied in
order to impose an ordering on the data. A well
known method from the statistics community is the
minimum covariance determinant (MCD) estimator [29]:
find h observations out of n, such that its covariance
matrix has the smallest determinant. The objects are
then ordered according to their Mahalanobis distance
to the data mean. Although this method is very robust,
it is not very flexible because it only fits a Gaussian
distribution to the data. More flexible density models
include the Parzen density model [3] or the mixture
of Gaussians [31]. The Parzen density can be approxi-
mated by defining the support of a data set by fitting
balls of fixed size around the training set [12,1]. Unfortu-
nately, density estimation in high-dimensional spaces is
difficult, and in order to reliably estimate the free
parameters, the models have to be restricted significantly
in complexity.
From the pattern recognition/machine learning field

more heuristic methods originate, for instance, neural
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network models [23,19] or models which are inspired by the
support vector classifiers [32,7,34]. They avoid performing
the often very difficult density estimation, and directly fit a
decision boundary around the data, but are often not
simple to implement and optimize. Also the outputs of
traditional two-class classifiers can be used for outlier
detection [38], thus focusing on the outliers from the
perspective of the classification problem.

Ref. [20] studies distance-based outliers which are
defined with respect to two parameters p and D: a data
point x is a distance-based outlier, abbr. DBðp;DÞ-
outlier, if at least fraction p of the other points lies
greater than distance D from x. The DBðp;DÞ-outlier are
global outliers, because D and p are chosen for all data
points. If the data consists of several clusters with different
variances, it can be difficult to choose a single D which is
appropriate. Thus, methods have been developed which
focus on local properties of the data, e.g. local outlier
factors (LOF, see [6]). LOF introduces an outlier index
which is based on a sophisticated theory of ‘‘local
reachability’’ and nearest neighbors, which gives rise to a
somewhat convoluted index. The outlier indices proposed
in this paper are defined in terms of nearest neighbors as
well, but are designed to be as simple and straightforward
as possible.

Most of the existing methods implicitly imply certain
definitions of what an outlier actually is, which are
often not explicitly stated. In this paper, we call data
points outliers if their true probability density is
very low. Obviously, the difficulty of this particular notion
is that the true probability density is unknown and it is a
challenge to obtain a reasonable estimate—especially in
high dimensions. However, the indices proposed in this
paper, some of which have been previously used for outlier
detection in [28,14], coarsely approximate the probability
density. Thus these indices are in principle applicable to all
settings that assume outliers to be data points in sparse
regions.

Notice that most methods mentioned above provide an
ordering of objects in a data set, according to their
typicality. Very untypical objects are candidates to be
labeled as outliers. On the other hand, it is of similar
importance to detect the most common or prototypical
samples in a data set. The latter is often useful to gain a
better understanding of the data. This idea will be
elaborated in this paper as well.

Summing up, this paper proposes simple indices
(see Section 2) based on nearest neighbors that allow
an ordering of the data from outliers to prototypes.
Once this representation is established we can use
it for (1) prototype detection (see Section 3.1), (2)
outlier removal, or accordingly novelty detection (see
Section 3.2), and (3) robustification of unsupervised
algorithms (see Section 3.3). Experiments on toy and
real data sets and handwritten digits underline the
practicability of our algorithm, in particular for high-
dimensional data sets.

2. Indices for ordering

Consider a set of n data points from the d-dimensional
Euclidean space,

fx1; . . . ;xng � Rd ,

with the Euclidean norm, kxk ¼
ffiffiffiffiffiffiffiffiffi
x>x
p

, and the Euclidean
metric. Other metrics (e.g. other Riemannian metrics or
Mahalanobis distance) can be effortlessly incorporated in
our framework. For a data point x 2 Rd , let

z1ðxÞ; . . . ; zkðxÞ 2 fx1; . . . ;xng � Rd ,

be its k nearest neighbors among the given data points
x1; . . . ;xn (with respect to the chosen metric). In terms of
these neighbors, we define three indices for each point
x 2 Rd . We will later use them for the ordering process. As
usual, the choice of k influences the perception of the data:
if k is chosen too small the focus is too local, if k is too
large it is too global.

2.1. Kappa

The k-nearest neighbor density estimator assesses the
density at a particular point by calculating the volume of
the smallest ball centered at that point which contains its k

nearest neighbors and relating it to the quotient k=n. It can
be proven that this density estimator is L2-consistent (see
[22]). Unfortunately, the estimate is not always very
accurate if the number of data points is small or the
dimensionality is high. However, outlier detection does not
require the actual density. In order to decide whether a
data point is an outlier or not, an approximate estimate is a
sufficient indicator. Our first index thus represents the
essence of the k nearest neighbor density estimator: kðxÞ is
the radius of the smallest ball centered at x containing its k

nearest neighbors, i.e. the distance between x and its kth
nearest neighbor,

kðxÞ ¼ kx� zkðxÞk.

Obviously, in dense regions k is small and in sparse regions
k is large, making it a good candidate for an outlier index,
as the rationale is that outliers lie in sparse regions.

2.2. Gamma

The index k, however, seems to be somewhat wasteful: it
considers the distance to the kth nearest neighbor, but it
ignores the distances to the closer neighbors. This suggests
a refined index that takes the distances to all k nearest
neighbors into account: gðxÞ is x’s average distance to its k

nearest neighbors,

gðxÞ ¼
1

k

Xk

j¼1

kx� zjðxÞk.

This index enables us to distinguish the two situations
depicted on the left panel of Fig. 1: the value of k is the
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