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Abstract

In this paper, we propose a novel dimensionality-reduction method—Fisher discriminant with Schur decomposition (FDS). Similar to

Foley–Sammon discriminant analysis (FSD), FDS is an improvement of Fisher discriminant analysis (FDA) in that it eliminates linear

dependences among discriminant vectors. In comparison with FSD, FDS is very simple in theory and realization. Experimental results

conducted on two benchmark face-image databases, i.e. ORL and AR, demonstrate that FDS is highly effective and efficient in reducing

dimensionalities of facial image spaces. Especially when the size of a database is large, FDS can even outperform the state-of-the-art

facial feature extraction methods such as the null space method.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Face recognition is one of the hottest research areas in
pattern recognition. In face recognition, the dimensionality
of an input space is so high that the input space has to be
compressed into a low-dimensional feature space before
classification. The reason is that direct recognition on a
high-dimensional input space might arouse the so-called
overtraining problem and heavy burden of computation.
Among numerous dimensionality-reduction techniques, the
Fisher discriminant analysis (FDA) [4] is most popular.
The essence of FDA is to learn a set of Fisher discriminant
vectors by solving an optimization model.

However, Fisher discriminant vectors are usually linearly
dependent. Many practices suggest that it will be helpful to
eliminate linear dependences among discriminant vectors
by making them orthogonal to each other. Based on this
fact, Foley and Sammon [5] proposed a set of optimal
discriminant vectors, which shared the idea with FDA, but
were subjected to orthogonality constraints for binary

classification tasks. Duchene and Leclercq [3] extended the
concept of optimal discriminant vectors to multiple-class
recognition problems. The dimensionality-reduction or
feature-extraction method based on optimal discriminant
vectors is well known as Foley–Sammon discriminant
analysis (FSD).
FSD is very effective for reducing dimensionalities of

input spaces in face recognition. But, its calculation
procedure for discriminant vectors is extraordinarily
time-consuming.
The rest of this paper is organized as follows. In Section 2,

the concepts of FDA and FSD are briefly reviewed. In
Section 3, the dimensionality-reduction method of FDS is
presented. In Section 4, the performance of FDS is
experimentally evaluated on two benchmark face-image
databases, ORL and AR. At last, a brief conclusion is
offered in Section 5.

2. FDA and FSD

In theory, the Fisher discriminant matrix whose column
vectors are Fisher discriminant vectors is an optimal
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solution of the following optimization model:

max
W2Rd�r

JðW Þ ¼
WTSBW
�� ��
WTSWW
�� �� , (1)

where W 2 Rd�r is an arbitrary matrix, SB and SW are
between- and within-class scatter matrices defined as in [4],
and jAj is the determinant of a square matrix A.

It has been proved that if SW is nonsingular, the matrix
composed of unit eigenvectors of the matrix S�1W SB

corresponding to the first r largest eigenvalues is an
optimal solution of the model (1) [9]. The unit eigenvector
matrix is the Fisher discriminant matrix commonly used in
practice. Thus, discriminant vectors of FDA can be
obtained by performing eigenanalysis on the matrix
S�1W SB. Suppose w1; . . . ;wr to be Fisher discriminant
vectors corresponding to eigenvalues l1; . . . ; lr, respec-
tively. It follows that

Jð½w1; . . . ;wr�Þ ¼
½w1; . . . ;wr�

TSB½w1; . . . ;wr�
�� ��

½w1; . . . ;wr�
TSW½w1; . . . ;wr�

�� ��

¼
Yr

j¼1

lj ¼ max
W2Rd�r

JðW Þ. ð2Þ

Since the matrix S�1W SB is usually asymmetric, the Fisher
discriminant vectors, i.e. column vectors of the eigenvector
matrix of S�1W SB are not necessarily orthogonal to each
other. In order to eliminate linear dependences in Fisher
discriminant vectors, FSD calculates its discriminant
vector as follows. The first discriminant vector of FSD is
taken as the first Fisher discriminant vector. After the first
k discriminant vectors of FSD w1; . . . ;wk have been
calculated, the (k+1)th discriminant vector wk+1 is one
of the optimal solutions for the following optimization
model:

max
wT

i
w¼0;i¼1;...;k

wTSBw

wTSWw
. (3)

Algorithms for calculation of optimal discriminant
vectors are usually complex. The summary of a simple
algorithm proposed by Jin et al. [7] is as follows. The first
discriminant vector of FSD is taken as a unit eigenvector of
the matrix S�1W SB corresponding to the largest eigenvalue.
After the first k discriminant vectors of FSD w1; . . . ;wk

have been calculated, the (k+1)th discriminant vector
wk+1 is taken as a unit eigenvector of the matrix S�1W PSB

corresponding to the largest eigenvalue. The matrix P is
calculated by the formula

P ¼ I �DTðDS�1W DTÞ
�1DS�1W , (4)

where I is an identity matrix, and D ¼ ½w1; . . . ;wk�
T.

3. Fisher discriminant with Schur decomposition (FDS)

It is well known that the Schur decomposition is a
natural extension of and a good substitution for eigenana-
lysis when the matrix identified to be analyzed is

asymmetric [6]. Let A be a real square matrix, its Schur
decomposition is A ¼ UTUT. Here, U is an orthogonal
matrix, and T is a quasi-upper-diagonal matrix with the
real eigenvalues of the matrix A on the diagonal and the
complex eigenvalues in 2� 2 blocks on the diagonal.1

Instead of performing eigenanalysis on the matrix S�1W SB

in FDA, Schur decomposition is carried out on S�1W SB in
FDS. Suppose the Schur decomposition of S�1W SB to be
UTUT, and u1,y,ud to be all column vectors of the matrix
U, i.e. Schur vectors of S�1W SB. It is obvious that u1,y,ud

are orthogonal to each other. Assume u1,y,ur to be Schur
vectors of S�1W SB corresponding to the first r largest real
eigenvalues. Thus, we can compress a high-dimensional
input space Rd into a low-dimensional feature space Rr by
mapping x7!VTx. Here, V ¼ ½u1; . . . ; ur� is the discrimi-
nant matrix of FDS, and u1,y,ur are corresponding
discriminant vectors.
Similar to FDA, the discriminant matrix of FDS is also

an optimal solution of the optimization model (1). The
following theorem reveals the fact:

Theorem. Suppose u1,y,ur to be discriminant vectors of

FDS. Thus, we have

Jð½u1; . . . ; ur�Þ ¼
½u1; . . . ; ur�

TSB½u1; . . . ; ur�
�� ��

½u1; . . . ; ur�
TSW½u1; . . . ; ur�

�� ��

¼ max
W2Rd�r

JðW Þ. ð5Þ

Proof. Since u1,y,ur are Schur vectors of the matrix
S�1W SB corresponding to the first r largest real eigenvalues,
we have

S�1W SBuj ¼ ljuj j ¼ 1; . . . ; r, (6)

where lj is the jth largest real eigenvalue of the matrix
S�1W SB. From the formula (6), it follows that

½u1; . . . ; ur�
TSB½u1; . . . ; ur�

¼ ½u1; . . . ; ur�
TSW½u1; . . . ; ur� diagðl1; . . . ; lrÞ. ð7Þ

Thus, we have

Jð½u1; . . . ; ur�Þ ¼
½u1; . . . ; ur�

TSB½u1; . . . ; ur�
�� ��

½u1; . . . ; ur�
TSW½u1; . . . ; ur�

�� ��

¼
Yr

j¼1

lj ¼ max
W2Rd�r

JðW Þ. ð8Þ

4. Evaluation of FDS in face recognition

Since face recognition is a typical small-sample-size (S3)
problem, like FDA, FSD and FDS cannot be used to
compress facial image spaces directly. Similar to Fish-
erfaces, an intermediate space is introduced first, i.e. a
facial image space is first compressed by a PCA transfor-
mation. Then, the largest N�l principal components are
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1See help of the function SCHUR in Matlab.
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