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a b s t r a c t

Fault diagnosis of bearings under localized defects is essential in the design of high performance rotor

bearing system. Traditionally, fault diagnosis of rolling element bearings is carried out performed by

the use of signal processing methods, which assume statistically stationary signal features. This paper

presents a feature-recognition system for rolling element bearings fault diagnosis, which utilizes cyclic

autocorrelation of raw vibration signals. Cyclostationary analysis of non-stationary signals clearly

indicates the appearance of several distinct modulating frequencies. The coefficients of wavelet

transform are calculated using six different base wavelets, after calculating cyclic autocorrelation of

vibration signals. The base wavelet that maximizes the Energy to Shannon Entropy ratio is selected to

extract statistical features from wavelet coefficients. Finally, a comparative study is carried out with the

calculated statistical features as input to soft computing techniques. Three soft computing techniques

are used for faults classifications, out of which two are supervised techniques i.e. Support vector

machine, Artificial Neural Network and other one is an unsupervised technique i.e. Self-Organizing

Maps. The Complex Gaussian wavelet is selected based on maximum Energy to Shannon Entropy ratio.

The results show that the support vector machine identifies the fault categories of rolling element

bearing more accurately and has a better diagnosis performance.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Rolling element bearings are used in a wide variety of rotating
machineries from small hand-held devices to heavy duty indus-
trial systems and are primary cause of breakdowns in these
machines. Condition monitoring of rolling element bearings using
vibration signature analysis is most commonly used to prevent
breakdowns in machinery. To analyze vibration signals, different
techniques such as time, frequency and time-frequency domain
are extensively used. Most methods used for fault diagnosis of
rolling element bearings consider the signal statistical properties
as stationary like demodulation or enveloping method. The
complex and non-stationary vibration signals with a large
amount of noise make the bearing defects very difficult to detect
by conventional methods. During last few years, vibration signals
obtained from rotating machines are modeled as cyclostationary.
Cyclostationary analysis assumes periodically time-varying sta-
tistics [1,2]. Various application areas of cyclostationary analysis
in mechanical engineering include gears [2–5], rolling element

bearings [6–9], IC engines [10,11] etc. Antoni et al. [12] have
proposed a methodology to model rotating machine signals as
cyclostationary processes.

The wavelet transform method has been proposed by some
researchers [13–19] to extract very weak signals for which FFT
becomes futile. Their property of being localized in time (space)
as well as scale (frequency) makes them useful for non-stationary
signals. This provides a time-scale map of a signal, enabling the
extraction of features that vary in time. The adaptive time–
frequency resolution makes it superior vis-�a-vis FFT. The effec-
tiveness of wavelet-based features for fault diagnosis of gears
using support vector machines (SVM) and proximal support
vector machines (PSVM) has been revealed by Saravanan et al.
[13]. Rafiee et al. [14] have proposed a technique for selecting
mother wavelet function using an intelligent fault diagnosis
system. The type of gear failures of a complex gearbox system
are identified using genetic algorithm and artificial neural
networks.

Kankar et al. [15–17] have paper presented a methodology for
fault diagnosis of ball bearings having localized defects on the
various bearing components using wavelet-based feature extrac-
tion. In present paper, fault diagnosis methodology presented
earlier [17] is further extended by considering signal as cyclosta-
tionary in nature which is more realistic. A feature-recognition
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system is presented for rolling element bearings fault diagnosis,
which utilizes cyclic autocorrelation and wavelet coefficients.
Cyclic auto-correlated vibration signals (CAVS) are obtained for
healthy and faulty bearing conditions from raw vibration signals.
The signals obtained using cyclic autocorrelation are divided into
27 sub-signals i.e. 128 scales in seventh level of decomposition,
which converted the complex vibration signals into simplified
signals with more resolution in time and frequency domains. Six
different wavelets are considered each with 128 scales, first three
from real valued (Meyer, Coiflet5 and Symlet2) and the other
three from complex valued (complex Gaussian, complex Morlet
and Shannon). In order to select the best base wavelet for rolling
element bearings fault diagnosis, Energy to Shannon Entropy ratio
for each wavelet is calculated. Then statistical features are
calculated from wavelet coefficients and fed as input along with
degree of cyclostationary, loader condition and rotor speed to soft
computing techniques i.e. Artificial Neural Network (ANN), SVM
and Self-Organizing maps (SOM). The diagnosis results validate
the effectiveness of the proposed approach.

2. Review of soft computing techniques

Soft computing is an approach of using examples (data) to
synthesize programs. In the present study, the two supervised
soft computing techniques are considered i.e. ANN and SVM.
Pattern recognition and classification using soft computing tech-
niques are described here [20,21].

2.1. Artificial neural network

Artificial neural network is an interconnected group of artifi-
cial neurons. These neurons use a mathematical or computational
model for information processing. ANN is an adaptive system that
changes its structure based on information that flows through the
network [20].

A single neuron consists of synapses, adder and activation
function. Bias is an external parameter of neural network. Model
of a neuron can be represented by following mathematical model

yk ¼j
Xp

i ¼ 1

wkixiþwk0

 !
ð1Þ

Input vector comprising of ‘p’ inputs multiplied by their
respective synaptic weights, and sum off all weighted inputs.
A threshold (bias) is used with constant input. Activation function
converts output into a limited range output. Intelligence of neural
network lies in the weights between neurons. Back Propagation

(BP) algorithm is most widely used as learning algorithm for
calculating synaptic weights.

2.2. Support vector machine

SVM is a supervised machine learning method based on the
statistical learning theory. It is a useful method for classification
and regression in small-sample cases such as fault diagnosis. In
this method, a boundary is placed between the two different
classes and orientates it in such way that the margin is max-
imized, which results in least generalization error. The nearest
data points that used to define the margin are called Support

Vectors. This is implemented by reducing it to a convex optimiza-
tion problem: minimizing a quadratic function under linear
inequality constraints [21]. A training sample set {(xi,yi)}; i¼1 to
N is considered, where N is total number of samples. The hyper-
plane f(x)¼0 that separates the given data can be obtained as a
solution to the following optimization problem
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where C is a constant representing error penalty. Rewriting the
above optimization problem in terms of Lagrange multipliers,
leads to the problem

Maximize WðlÞ ¼
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The Sequential Minimal Optimization (SMO) algorithm gives an
efficient way of solving the dual problem arising from the deriva-
tion of the SVM. SMO decomposes the overall quadratic program-
ming problem into quadratic programming sub-problems.

2.3. Self-organizing maps (SOM)

Self-organizing maps are special class of ANN and are based on
competitive learning. In self-organizing maps, the neurons are
placed at the nodes of a lattice that is usually one or two
dimensional. The neurons become selectively tuned to various
input patterns or classes of input patterns in the course of a

Nomenclature

b Bias or threshold
Cn,i ith wavelet coefficient of nth scale
E(n) Energy of nth scale
E[] Expected value
f(t) Signal
f00 Mean value of population
n Scale number
Rf(t,t) Autocorrelation function
Ra

f t,tð Þ Cyclic autocorrelation function
Sentropy(n) Shannon Entropy of nth scale
W(l) Lagrange function
wjk Synaptic weight between hidden and output layer
xpi ith input of the pth input vector

yk Output of kth neuron
a Cyclic frequency
li Lagrange multipliers
sx Standard deviation
t Time lag
xi The distance between the margin and the examples xi

that lying on the wrong side of the margin
obpfi Ball passage frequency on the inner race
obpfo Ball passage frequency on the outer race
obsf Ball spin frequency
ocage Cage frequency
oin Rotational frequency of inner race
JwJ�2 Geometrical margin z nð Þ

z nð Þ Energy to Shannon Entropy ratio of nth scale
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