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a b s t r a c t

In this paper, we propose the normalized discriminant analysis (NDA) technique for dimensionality

reduction. NDA is built on the information of data point pairs that is implicitly encoded by using the

pseudo-Riemannian metric tensor. This makes NDA to be easily adapted for unsupervised or supervised

learning. It is also interesting to note that the solution of NDA will asymptotically converge to that of

generalized linear discriminant analysis (GLDA) under proper conditions. This gives us some insights in

understanding the evolving behavior of NDA. Extensive experiments on a simulated data, face images,

character images, and UCI data sets are carried out to demonstrate the effectiveness of NDA.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Dimensionality reduction techniques have been widely used in
various areas such as machine learning, pattern recognition, and
computer vision [1–3]. The general aim of dimensionality reduction
is to reduce the dimensionality of data such that the extracted
features are as representable as possible. During the past several
decades, a variety of algorithms and techniques [4–7] for dimen-
sionality reduction have been developed. Among them, principal
component analysis (PCA) and linear discriminant analysis (LDA)
are two widely used linear dimensionality reduction methods.
In general, PCA is to obtain an orthogonal set of vectors by maxi-
mizing the variance of the projected vectors while LDA is to search
for discriminant vectors such that the ratio of the between-class
distance to the within-class distance is maximized. However,
LDA often suffers from the small sample size (3S) problem if the
dimension of data is much larger than the number of data points. To
overcome this problem, some effective approaches have been
proposed. The algorithms such as regularized LDA, PCA plus LDA
[2], pseudo-inverse LDA, and orthogonal LDA [8] mainly handle the
singularity problem in LDA. LDA/QR [6] and the spectral regression
discriminant analysis (SRDA) [9–11] not only overcome the singu-
larity problem in LDA but also have clearly computational advan-
tages over most LDA algorithms on the large data sets.

Although PCA and LDA can effectively extract the features
of data, they are in nature linear and may fail to reveal the
underlying structure of some complex data such as faces and
handwritten characters. To capture the geometrical structure of

data, some non-linear dimensionality reduction algorithms such
as ISOMAP [12], LLE [13] and Laplacian Eigenmaps [14] have been
developed. Note that these non-linear dimensionality reduction
algorithms are only available for the samples in the training
set. In order to make these algorithms be adapted for pattern
recognition tasks such as face recognition, one often obtains
linear approximations of these non-linear dimensionality reduc-
tion methods. For example, the locality preserving projections
(LPP) [15] algorithm, as a linear approximation of Laplacian
Eigenmaps, is an effective dimensionality reduction technique
and has many similar properties with Laplacian Eigenmaps.

In this paper, motivated by the normalized Laplacian matrix in
graph theory, we propose normalized discriminant analysis for
dimensionality reduction. First, we define a normalized total scatter
matrix, which extends the total scatter matrix. Then we define
a normalized within-locality scatter matrix from the idea of locality
preserving projections and further obtain a new scatter matrix.
Based on these three scatter matrices, we define two criteria to
obtain the projection matrix: one is similar to the generalized Fisher
criterion with a Rayleigh quotient in form and the other is similar
to the discrepancy criterion. Note that optimizing these two criteria
can be transformed into solving the (generalized) eigenvalue pro-
blems. Different from classical LDA, normalized discriminant analy-
sis is available for unsupervised or supervised learning. Moreover,
it is found that classical linear discriminant analysis is an extreme
case of normalized discriminant analysis under proper conditions.

2. Locality preserving projections

The locality preserving projections (LPP) algorithm [15], as
a linear approximation of the non-linear Laplacian Eigenmap, is
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justified to preserve the neighborhood structure in a certain
sense. To be specific, LPP searches for an n� d matrix G to project
l samples x1,x2, � � � ,xlARn into a low-dimensional subspace in
which the local structure of data can be preserved. The linear
transformation G is usually obtained by minimizing the following
objective function under approximate constraints

min
G

1

2

Xl

i ¼ 1

Xl

j ¼ 1
:GT xi�GT xj:

2
S i,jð Þ, ð1Þ

where S i,jð Þis the weight of an edge between the nodes i and j in
the adjacency graph. In an adjacency graph, there exists the edge
between the nodes i and j if these two nodes belong to k-nearest
neighbors or e-neighborhoods. The weight of an edge between
nodes i and j may take the heat kernel S i,jð Þ ¼ e�:xi�xj:

2
=dor 1 in

terms of the connected conditions.
The minimization problem of Eq. (1) along with a constraint

condition of vertices constructs the following generalized eigen-
value problem.

XLXT gk ¼ lkXD1XT gk, k¼ 1, � � � ,d, ð2Þ

where D1 is a diagonal matrix whose ith diagonal element
isD1 i,ið Þ ¼

P
jS i,jð Þ, L¼D1�S, and gkis the kth column of the matrix

G. Note that directly solving Eq. (2) may not be efficient on large
data sets. To this end, Cai et al. [16] transformed LPP into a
regression framework. In this framework, the spectral regression
locality preserving projection (SRLPP) can be solved by a sparse
matrix eigen-decomposition followed with regularized least squares.

3. Normalized discriminant analysis

In this section, we first give the definition of the normalized
total scatter matrix, which generalizes the total scatter matrix in
some sense. Then we give two new scatter matrices. Finally, we
construct the optimization models and give their algorithm.

Given a random variable x, the total scatter matrix is defined as

St ¼ E x�Exð Þ x�Exð Þ
T , ð3Þ

where E(x) denotes the expectation of a random variable x. When
a set of samples x1, � � � ,xlð Þare given, the total scatter matrix is
approximately obtained by

~St ¼
1

l

Xl

i ¼ 1
xi�mð Þ xi�mð Þ

T , ð4Þ

where m¼ 1=l
� �Pl

i ¼ 1 xiis the mean of the samples. Note that ~St

can be written as

~S t ¼
1

l2

Xl

i ¼ 1

Xl

j ¼ 1
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T

¼
1

2l2

Xl

i ¼ 1
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j ¼ 1
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T

þ
1

2l2

Xl
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Xl

j ¼ 1
xj�m
� �

xj�m
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: ð5Þ

It is not difficult to verify that
Pl

i ¼ 1

Pl
j ¼ 1 xi�mð Þ m�xj

� �T
¼ 0

and
Pl

i ¼ 1

Pl
j ¼ 1 m�xj

� �
xi�mð Þ

T
¼ 0.Adding two expressions to

Eq. (5), one can obtain
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1

2l2
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From Eq. (6), it is found that ~St is expressed in terms of data
point pairs. From a viewpoint of graph theory, the data points can
be considered as the vertices in an undirected graph where the
weight between data points xi and xj is 1, and the degree of each
vertex is l. Thus ~St can be obtained from a fully connected graph.
According to Eq. (6), we define the following normalized total

scatter matrix

~Snt ¼
1

2l

Xl

i ¼ 1

Xl

j ¼ 1
W i,jð Þ

xiffiffiffiffi
di

p �
xjffiffiffiffi

dj

q
0
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T

¼
1

l
X Il�l�D�1=2

2 WD�1=2
2

� �
XT , ð7Þ

where W i,jð Þ is the weight of data points xi and xj, dj is the row
sum of the matrix W, D2 ¼ diag d1, � � � ,dlð Þ, Il�lis an l� l identity
matrix, and D�1=2

2 is the negative square root of D2. It is clear that
dj is the degree of data point xj and Il�l�D�1=2

2 WD�1=2
2 is the

normalized Laplacian matrix of W [17]. Note that the definition of
the normalized scatter matrix in Eq. (7) is different from that of
the weighted scatter matrix. It is observed that Eq. (7) not only
considers the weight of data points but also uses the distribution
of data points. Specifically speaking, each data point is also
assigned to an additional weight. If the heat kernel [14] is chosen
as the weight for Eq. (7), one can see that the following proposi-
tion holds in terms of the law of large numbers in probability
theory.

Proposition 1. For any positive number e, one has

lim
l-1,d-1

Prob : ~Snt�St:F oe
� �

¼ 1

The proposition shows that ~Sntwill approach St in probability if

the parameter of heat kernels and the number of samples both

approach the infinity. In real applications, we often need to

estimate St on the limited samples. Since ~Sntwill asymptotically

converge to St under proper conditions, ~Snt can be used as a rough

estimation of St . Note also that ~Sntwill approach ~St on the limited

samples as the parameter of the heat kernel approaches infinity.

To be specific, ~Snt extends ~St in some sense, i.e., ~St is an extreme

case of ~Snt . Thus one can explore the behavior of the neighbor-

hood of ~St by changing the parameter of the heat kernel in ~Snt .

In addition, it is found that all the training samples lead to the

common vector when they are projected into the null space of ~St

[8]. However, it is seen from Eq. (7) that all the samples may yield

different vectors in the null space of ~Snt since the degree of each

vertex may be different. This shows that the samples also contain

discriminant information even if they are projected into the null

space of ~Sntin the general case. For the sake of notational

simplicity, we refer to the null space of ~Snt as a trivial space.

Given a set of data points, some of them have similar properties.
In order to explore the structure of data points with similar
properties, we define the following normalized within-locality
scatter matrix from the idea of locality preserving projections [15].

~Snw ¼
1

2l

Xl

i ¼ 1

Xl

j ¼ 1
S i,jð Þ

xiffiffiffiffi
si
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xjffiffiffiffi
sj
p
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l
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3 SD�1=2
3
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where D3 is a diagonal matrix whose diagonal elements are
s1,. . .,sl, si is the degree of data point xi, and Il�l�D�1=2

3 SD�1=2
3 is

the normalized Laplacian matrix of S [17]. In Eq. (8), it is required
that the data point which pairs with similar properties should have
non-zero non-negative weights while the data point pairs with
dissimilar properties should have zero weights. Thus Eq. (8) only
considers data point pairs with similar properties. It is clear that
the main difference between Eq. (8) and Eq. (7) is that the former
is defined in terms of the adjacency graph and the latter is
constructed based on a fully connected graph where there have
the edges for any pair of nodes. If si i¼ 1, � � � ,lð Þ in Eq. (8) are set to 1,
we refer to Eq. (8) as the unnormalized within-locality scatter
matrix (UWLSM). It is observed that all the training samples with
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