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In this paper, we propose the normalized discriminant analysis (NDA) technique for dimensionality
reduction. NDA is built on the information of data point pairs that is implicitly encoded by using the
pseudo-Riemannian metric tensor. This makes NDA to be easily adapted for unsupervised or supervised
learning. It is also interesting to note that the solution of NDA will asymptotically converge to that of
generalized linear discriminant analysis (GLDA) under proper conditions. This gives us some insights in
understanding the evolving behavior of NDA. Extensive experiments on a simulated data, face images,
character images, and UCI data sets are carried out to demonstrate the effectiveness of NDA.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Dimensionality reduction techniques have been widely used in
various areas such as machine learning, pattern recognition, and
computer vision [1-3]. The general aim of dimensionality reduction
is to reduce the dimensionality of data such that the extracted
features are as representable as possible. During the past several
decades, a variety of algorithms and techniques [4-7] for dimen-
sionality reduction have been developed. Among them, principal
component analysis (PCA) and linear discriminant analysis (LDA)
are two widely used linear dimensionality reduction methods.
In general, PCA is to obtain an orthogonal set of vectors by maxi-
mizing the variance of the projected vectors while LDA is to search
for discriminant vectors such that the ratio of the between-class
distance to the within-class distance is maximized. However,
LDA often suffers from the small sample size (3S) problem if the
dimension of data is much larger than the number of data points. To
overcome this problem, some effective approaches have been
proposed. The algorithms such as regularized LDA, PCA plus LDA
[2], pseudo-inverse LDA, and orthogonal LDA [8] mainly handle the
singularity problem in LDA. LDA/QR [6] and the spectral regression
discriminant analysis (SRDA) [9-11] not only overcome the singu-
larity problem in LDA but also have clearly computational advan-
tages over most LDA algorithms on the large data sets.

Although PCA and LDA can effectively extract the features
of data, they are in nature linear and may fail to reveal the
underlying structure of some complex data such as faces and
handwritten characters. To capture the geometrical structure of
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data, some non-linear dimensionality reduction algorithms such
as ISOMAP [12], LLE [13] and Laplacian Eigenmaps [14] have been
developed. Note that these non-linear dimensionality reduction
algorithms are only available for the samples in the training
set. In order to make these algorithms be adapted for pattern
recognition tasks such as face recognition, one often obtains
linear approximations of these non-linear dimensionality reduc-
tion methods. For example, the locality preserving projections
(LPP) [15] algorithm, as a linear approximation of Laplacian
Eigenmaps, is an effective dimensionality reduction technique
and has many similar properties with Laplacian Eigenmaps.

In this paper, motivated by the normalized Laplacian matrix in
graph theory, we propose normalized discriminant analysis for
dimensionality reduction. First, we define a normalized total scatter
matrix, which extends the total scatter matrix. Then we define
a normalized within-locality scatter matrix from the idea of locality
preserving projections and further obtain a new scatter matrix.
Based on these three scatter matrices, we define two criteria to
obtain the projection matrix: one is similar to the generalized Fisher
criterion with a Rayleigh quotient in form and the other is similar
to the discrepancy criterion. Note that optimizing these two criteria
can be transformed into solving the (generalized) eigenvalue pro-
blems. Different from classical LDA, normalized discriminant analy-
sis is available for unsupervised or supervised learning. Moreover,
it is found that classical linear discriminant analysis is an extreme
case of normalized discriminant analysis under proper conditions.

2. Locality preserving projections

The locality preserving projections (LPP) algorithm [15], as
a linear approximation of the non-linear Laplacian Eigenmap, is
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justified to preserve the neighborhood structure in a certain
sense. To be specific, LPP searches for an n x d matrix G to project
I samples X1,Xp,---,X; € R" into a low-dimensional subspace in
which the local structure of data can be preserved. The linear
transformation G is usually obtained by minimizing the following
objective function under approximate constraints
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where 5(i,j)is the weight of an edge between the nodes i and j in
the adjacency graph. In an adjacency graph, there exists the edge
between the nodes i and j if these two nodes belong to k-nearest
neighbors or ¢-neighborhoods. The weight of an edge between
nodes i and j may take the heat kernel S(i,j) = e~ I%%l"/%0r 1 in
terms of the connected conditions.

The minimization problem of Eq. (1) along with a constraint
condition of vertices constructs the following generalized eigen-
value problem.

XLX'g, = ) XD:X"g,, k=1,---.d, 2)

where D; is a diagonal matrix whose ith diagonal element
isD1(i,i) = 37;S(i,j), L = D1 S, and g;is the kth column of the matrix
G. Note that directly solving Eq. (2) may not be efficient on large
data sets. To this end, Cai et al. [16] transformed LPP into a
regression framework. In this framework, the spectral regression
locality preserving projection (SRLPP) can be solved by a sparse
matrix eigen-decomposition followed with regularized least squares.

3. Normalized discriminant analysis

In this section, we first give the definition of the normalized
total scatter matrix, which generalizes the total scatter matrix in
some sense. Then we give two new scatter matrices. Finally, we
construct the optimization models and give their algorithm.

Given a random variable x, the total scatter matrix is defined as

= E(x—Ex)(x—Ex)", 3)

where E(x) denotes the expectation of a random variable x. When
a set of samples (xy,---,X;)are given, the total scatter matrix is
approximately obtained by
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where m = (1/1) X! _, x;is the mean of the samples. Note that S,
can be written as
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It is not difficult to verify that Z, -1 Z, _1 (¥—m)(m— xj) =0
and 2171 qu (m—=x;)(x;—m)" = 0.Adding two expressions to
Eq. (5), one can obtain

(x;—m)(x;—m)"
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From Eq. (6), it is found that S; is expressed in terms of data
point pairs. From a viewpoint of graph theory, the data points can
be considered as the vertices in an undirected graph where the
weight between data points x; and X; is 1, and the degree of each
vertex is I. Thus S; can be obtained from a fully connected graph.
According to Eq. (6), we define the following normalized total

scatter matrix
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where W(i,j) is the weight of data points Xx; and x;, d; is the row
sum of the matrix W, D, =diag(dy, - - -,d)), I;,jis an [ x | identity
matrix, and D, 1/2{s the negative square root of D,. It is clear that
d; is the degree of data point x; and I,,—D,"/*WD, " is the
normalized Laplacian matrix of W [17]. Note that the definition of
the normalized scatter matrix in Eq. (7) is different from that of
the weighted scatter matrix. It is observed that Eq. (7) not only
considers the weight of data points but also uses the distribution
of data points. Specifically speaking, each data point is also
assigned to an additional weight. If the heat kernel [14] is chosen
as the weight for Eq. (7), one can see that the following proposi-
tion holds in terms of the law of large numbers in probability
theory.

Proposition 1. For any positive number ¢, one has
lim Prob(HSm—St [F< E‘) =1
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The proposition shows that S,,will approach S; in probability if
the parameter of heat kernels and the number of samples both
approach the infinity. In real applications, we often need to
estimate S; on the limited samples. Since S,will asymptotically
converge to S, under proper conditions, S, can be used as a rough
estimation of S;. Note also that S,;will approach S; on the limited
samples as the parameter of the heat kernel approaches infinity.
To be specific, S, extends S; in some sense, i.e., S; is an extreme
case of Sy;. Thus one can explore the behavior of the neighbor-
hood of §; by changing the parameter of the heat kernel in S;.
In addition, it is found that all the training samples lead to the
common vector when they are projected into the null space of S;
[8]. However, it is seen from Eq. (7) that all the samples may yield
different vectors in the null space of S since the degree of each
vertex may be different. This shows that the samples also contain
discriminant information even if they are projected into the null
space of Spin the general case. For the sake of notational
simplicity, we refer to the null space of S,; as a trivial space.

Given a set of data points, some of them have similar properties.
In order to explore the structure of data points with similar
properties, we define the following normalized within-locality
scatter matrix from the idea of locality preserving projections [15].
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where D3 is a diagonal matrix whose diagonal elements are
S1,...S;, S; is the degree of data point x;, and l,x,fD;l/zSD;l/2 is
the normalized Laplacian matrix of § [17]. In Eq. (8), it is required
that the data point which pairs with similar properties should have
non-zero non-negative weights while the data point pairs with
dissimilar properties should have zero weights. Thus Eq. (8) only
considers data point pairs with similar properties. It is clear that
the main difference between Eq. (8) and Eq. (7) is that the former
is defined in terms of the adjacency graph and the latter is
constructed based on a fully connected graph where there have
the edges for any pair of nodes. If s;(i=1, ---,l) in Eq. (8) are set to 1,
we refer to Eq. (8) as the unnormalized within-locality scatter
matrix (UWLSM). It is observed that all the training samples with
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