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a b s t r a c t

Semi-supervised dimensionality reduction is an important research topic in many pattern recognition
and machine learning applications. Among all the methods for semi-supervised dimensionality
reduction, SDA and LapRLS/L are two popular ones. Though the two methods are actually the extensions
of different supervised methods, we show in this paper that both SDA and Lap-RLS/L can be unified
under a regularized least square framework. In this paper, we propose a new effective semi-supervised
dimensionality reduction method for better cope with data sampled from nonlinear manifold. In
addition, the proposed method can both handle the regression as well as the subspace learning problem.
Theoretical analysis and extensive simulations show the effectiveness of our algorithm. The results in
simulations demonstrate that our proposed algorithm can achieve great superiority compared with
other existing methods.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Image classification, such as face recognition, is an important
research direction in the field of pattern recognition and machine
learning research [1–4]. One of the most successful and well-studied
techniques is the appearance-based method. It usually represents an
image of n� n pixels by a n� n-dimensional vector. Usually, most
researchers focus on designing a classifier, which can classify image
in the n� n-dimensional space directly. However, due to the “curse
of dimensionality” [22], dealing with high-dimensional data has
always been a major problem for image classification. Finding a
low-dimensional representation of high-dimensional space, namely
dimensionality reduction, is thus of great practical importance. The
goal of dimensionality reduction is to reduce the complexity of input
space and embed high-dimensional space into a low-dimensional
space while keeping most of the desired intrinsic information
[1,2,11,12,29–32]. Among all the dimensionality reduction techni-
ques, Principal Component Analysis (PCA) [3] and linear discrimi-
nant analysis (LDA) [4] are two popular methods which have been
widely used in many classification applications. PCA pursues the
direction of maximum variance for optimal reconstruction. While

LDA, as a supervised method, is to find the optimal projection V that
maximizes the between-class scatter matrix Sb while minimizes the
within-class scatter matrix Sw in the low-dimensional subspace. Due
to the utilization of label information, LDA can achieve better
classification results than those obtained by PCA if sufficient labeled
samples are provided [4].

Though supervised methods generally outperform unsupervised
methods, obtaining sufficient number of labeled samples for training
can be problematic because labeling large number of samples is time-
consuming and costly. On the other hand, unlabeled samples may be
abundant and can easily be obtained in the real world. Thus, using
semi-supervised learning methods [5–10], which incorporate both
labeled and unlabeled samples into learning procedure, has become
an effective option instead of only relying on supervised learning. Two
well-known semi-supervised learning methods are GFHF [5] and
LLGC [6]. These methods work in a tranductive way by propagating
the label information from labeled set to unlabeled set via label
propagation. But they cannot predict the class labels of new-coming
samples hence suffering the out-of-sample problem. In contrast,
semi-supervised dimensionality reduction methods can solve this
problem. These methods will firstly construct a manifold regularized
term to preserve the geometrical structure with both labeled and
unlabeled set [13]. Then, they will find a transformed matrix to
perform dimensionality reduction by incorporating the manifold
regularized term into the original objective function of supervised
algorithms. Hence, the new-coming samples can be projected into
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a low-dimensional subspace by using such a transformed matrix and
the out-of-sample problem can be solved, which is more practical in
real-world applications.

Many semi-supervised dimensionality reduction have been
proposed during the past decade. Two widely-used methods are
Semi-supervised Discriminant Analysis (SDA) [7] and Linear
Laplacian Regularized Least Square (LapRLS/L) [8]. These methods
share the same concept for dimensionality reduction, i.e. they first
construct the graph Laplacian matrix to approximate the manifold
structure by using both labeled and unlabeled samples. They then
perform dimensionality reduction by adding the graph Laplacian
matrix as a regularized term to the original objective function of
LDA and Regularized Least Square (RLS), respectively. Hence both
the discriminative structure embedded in the labeled samples and
the geometrical structure embedded in both labeled and unlabeled
set can be preserved. However, Lap-RLS/L is essentially derived
from regression problem instead of classification problem (it can
only reduce the dimensionality to c), while SDA is a subspace
learning methods which arms to solve classification problem.
Though they are initially based on different supervised methods,
we show in this paper that both SDA and Lap-RLS/L can be unified
under a regularized least square framework. Based on this frame-
work, we then propose a least square version of SDA, referred as
LS-SDA, which can both solve regression as well as the subspace
learning problem.

In general, most DR methods (e.g. PCA, LDA, Lap-RLS/L, SDA and
LS-SDA) are to calculate a linear projection matrix V by assuming the
low-dimensional data representation Z is constrained in the linear
subspace spanned by the training data matrix X, i.e. Z ¼ VTXþbTe.
Then, the low-dimensional representation Z can be used for faster
training and testing in real-world applications. While this linearization
constraint provides a simple and effective method to map new sam-
ples, Nie et al. argue such constraint is over-strict to fit some data
sampled from a nonlinear manifold [9], they then arm to relax this
hard constraint in Lap-RLS/L and propose a FME to solve this problem.
In fact, both Lap-RLS/L and FME is actually regression problem, i.e. they
are to fix a linear model to the labels of labeled samples as well as to
preserve the manifold smoothness. Since they are initially derived
from regression problem instead of subspace learning problem, they
cannot perform subspace learning less than c features. In this paper, to
relax this hard constraint in LS-SDA, we add a kernel regression
residual term jjVTφ Xð ÞþbTe�Zjj2F to the reformulated least square
framework of SDA. With such relaxation, the proposed method tries to
model the mismatch between the low-dimensional data representa-
tion Z and the kernel regression function VTφ Xð ÞþbTe�Z both in the
objective function and the constraint, rather than force Z to lie in the
subspace spanned by the data matrix X. Hence the proposed method,
referred as Least Square Semi-supervised Discriminant Analysis with
Flexible Kernel Regression (LS-SDA/F), is more flexible and generally
suitable to cope with a certain type of nonlinear manifold that is
somewhat close to a linear subspace. It is also illustrated that LS-SDA is
only a special case LS-SDA/F.

The main contributions of this paper are as follows: (1) We
address SDA into a least square framework and proposed a least
square version of SDA, which can both solve regression as well as the
subspace learning problem; (2) We propose the LS-SDA/L method by
relaxing the hard constraint, i.e. Z ¼ VTX, in the least square
reformulation of SDA. With this relaxation, LS-SDA/L can better cope
with the data sampled from a certain type of nonlinear manifold
that is somewhat close to a linear subspace.

This paper is organized as follows: wewill give the notations and a
brief review of LDA, MR and SDA. In Section 3, we will address SDA
under a constrained regularized least square framework. In Section 4,
we will present the proposed LS-SDA/F method for semi-supervised
dimensionality reduction. Extensive simulations are conducted in
Section 5 and the final conclusions are drawn in Section 6.

2. Notations and review of related work

2.1. Linear discriminant analysis (LDA)

The goal of LDA is to seek an optimal projection matrix VnARD�d

that maximizes between-class scatter matrix while minimizes
with-class scatter matrix [29]. Let Xl ¼ x1; x2;…; xl

� �
ARD�l be a

set of l samples belonging to c classes, Yl ¼ fy1; y2;…; yjgARc�l be
the binary label matrix with each column yj representing the class
assignment of xj, i.e. yij ¼ 1, as the class matrix, where yij ¼ 1, if xj
belongs to the ith class; yij ¼ 0, otherwise, D and c are the numbers
of features and classes, respectively. We also denote G¼
g1; g2;…; gl

� �¼ ðYYT Þ�1=2YARc�l as the scaled class indicator
matrix [16,17], where gij ¼ 1=

ffiffiffi
li

p
, if xj belongs to the ith class;

gij ¼ 0, otherwise. Since YYT is diagonal matrix, then GGT ¼
ðYYT Þ�1=2YYT ðYYT Þ�1=2 ¼ I. Hence assuming the data matrix Xl

are centered, the total-class, between-class and within-class scatter
matrix St , Sb, Sw can be defined as

St ¼∑c
i ¼ 1∑xA ci x�μð Þ x�μð ÞT ¼ XlX

T
l

Sb ¼∑c
i ¼ 1li μi�μ

� �
μi�μ
� �T ¼ XlG

TGXT
l

Sw ¼∑c
i ¼ 1∑xA ci x�μi

� �
x�μi
� �T ¼ XlX

T
l �XlG

TGXT
l ; ð1Þ

where li is the number of samples in the ith class, μi is the mean of
samples in the ith class, and μ is the mean of all labeled samples.
The optimal projection matrix Vn

LDA are then formed by eigenvectors
corresponding to the d largest eigenvalues of S�1

w Sb or S�1
t Sb.

2.2. Manifold regularization (MR)

The MRmethod [8] extends many existing methods such as least
square and SVM to their semi-supervised learning methods by
adding a manifold regularized term to preserve the geometrical
structure. Take the linear Laplacian regularized Least Square
method (referred as Lap-RLS/L) as an example. Let X ¼ Xl;Xu

� �¼
x1; x2;…; xlþu

� �
ARD� lþuð Þ be the data matrix where the first l and

the remaining u columns are the labeled and unlabeled samples,
respectively. The goal of Lap-RLS/L is to fix a linear model
yj ¼ VTxjþbT by regressing X on Y and simultaneously to preserve
the manifold smoothness embedded in both labeled and unlabeled
set, where VARD�d is the projection matrix and bAR1�c is the bias
term. The objective function of Lap-RLS/L can be given as

J V ; bð Þ ¼ min ∑
l

j ¼ 1
‖VTxjþbT �yj‖2F þαt‖V‖2F þαmTr VTXLXTV

� �
; ð2Þ

where L¼D�W is the graph Laplacian matrix associated with both
labeled and unlabeled set [12], W is the weight matrix defined as:
wij ¼ exp �jjxi�xjjj2=2σ2

� �
, if xi is within the k nearest neighbor of

xj or xj is within the k nearest neighbor of xi; wij ¼ 0, otherwise, D is
a diagonal matrix satisfying Dii ¼∑lþu

j ¼ 1wij, αm and αt are the two
parameters balance the tradeoff between manifold and Tikhonov
regularized terms.

2.3. Semi-supervised discriminant analysis (SDA)

Motivated by the manifold regularization (MR), SDA further
extends the conventional LDA to preserve the geometric structure
by adding a manifold regularized term to the objective function of
LDA. The objective function of SDA can be given by:

J Vð Þ ¼ max Tr VT Stþαt IþαmXLX
T

� �
V

� ��1
VTSbV

	 

: ð3Þ

Then, similar to LDA, the optimal solution of SDA can be
obtained by the Generalized Eigenvalue Decomposition as

SbV
n

SDA ¼ Stþαt IþαmXLX
T

� �
Vn

SDAΛ: ð4Þ
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