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a b s t r a c t

This paper studies the group consensus problem of second-order multi-agent systems (MASs) with time
delays. First, by state transformation method, the group consensus problem of multi-agent systems can
be equivalently transformed into the asymptotical stability of a time-delay system. Then, by Lyapunov
first method and Hopf bifurcation theory, respectively, we aim to find the upper bound of time delay τn

such that the multi-agent systems can achieve group consensus for τA ½0; τnÞ. Finally, simulation
examples are given to show the effectiveness of our theoretical analysis.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Multi-agent system is a computerized system consisting of multi-
ple interacting intelligent agents within an environment, where each
agent may be a physical or abstract entity. Because of the character-
istics of autonomy, distribution, coordination and the abilities of self-
organization, multi-agent technology is widely used in cooperative
control of unmanned air vehicles, flocking of multiple vehicles [1],
formation control [2,3], scheduling of automated highway systems
and other fields [4–6]. In these applications, a single agent is often
required to be consistent with the rest of agents on some quantities
(position, velocity, etc.), which is called the consensus problem.

Consensus problem is one of the important issues in coordination
control of multi-agent systems and receives the researchers' attention
[7–17]. Vicsek et al. [10] proposed a simple model for phase transition
of a group of self-driven particles and numerically demonstrated
complex dynamics of the model. Using graph theory, Jadbabaie et al.
[11] provided a theoretical explanation for the consensus behavior of
the Vicsek model. Based on the analysis in [11], Saber et al. [12]
investigated the consensus problems for networks of dynamic agents
with fixed and switching topologies by discussing three cases: directed
networks with fixed topology, directed networks with switching
topology, undirected networks with communication time-delays and
fixed topology. Moreover, [12,13] gave some relationships between
topology and Laplacian matrix. Ref. [14] established a necessary and

sufficient second-order consensus criterion and proved that both the
real and imaginary parts of the eigenvalues of the Laplacian matrix
play key roles in reaching consensus. Ref. [16] studied the average-
consensus problem in directed networks of agents with both switching
topology and time delays. In [17], a leader-following consensus pro-
blem of second-order multi-agent systems with fixed and switching
topologies as well as non-uniform time-varying delays is considered.

Recently, group/cluster consensus has been pointed out as an
important elaboration of the classical consensus problem and attr-
acted a great deal of attention within the control community [18–24].
Group consensus means that all the agents in a multi-agent system are
divided into multiple subgroups and each group will reach a con-
sistent state while no consensus appears among different groups.
Moreover, group consensus is a fundamental phenomenon in nature
and human society, such as the group formation of personal opinion,
and birds coordination by interacting with peers in their own and
other species [25]. Compared with traditional consensus problem,
group consensus problem is more complex. Therefore, some necessary
assumptions on the coupling matrix of the network were given to
ensure the realization of group consensus inmost papers. For example,
[18] assumed that the influence from any other group to the node is
equal to zero, i.e., the in-degree of the node is balanced to other
groups. Refs. [19,22] required the coupling matrix to be irreducible,
while [20,23,24] and [21] assumed the coupling matrix to be sym-
metric and stochastic, respectively. Ref. [26] discussed the average
group consensus for multi-agent systems with directed topology. By
introducing double-tree-form transformation, [27] investigated group
consensus of multi-agent systems with switching topologies and time
delays, where the agents are described by single-integrator dynamics.
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Group consensus control for second-order dynamic multi-agent
systems was investigated in [28,29]. The agents in [29] were described
by nonlinear dynamics and group consensus problem was addressed
through leader-following approach and pinning control. As for the
aforementioned papers, most of them neglected the effect of time
delays on the group consensus of MASs. In fact, time delay is
ubiquitous in multi-agent systems due to the possible slow process
of interactions agents. Control protocol without considering the effect
of time delays may cause the instability of MASs. This motivates us to
write this paper.

In this paper, we will establish the group consensus criteria of
second-order multi-agent systems with time delays by seeking the
maximal time-delay bound. The motivation of this work is to extend
and complement the group consensus results in [27] from single-order
MASs to second-order MASs with time-delays. As a comparison, [27]
established the LMI-based group consensus criteria for single-order
multi-agent system with time-delays by seeking a Lyapunov function
and neglected the computation of the allowable upper bound of time
delays. Moreover, the construction and choice of Lyapunov function
will lead to much more conservative results. Ref. [28] just studied
second-order multi-agent systems by matrix analysis and neglected
the time delays between agents. Our main contributions can be
summarized as follows. (I) The second-order group consensus pro-
blem is more complicated and challenging than that of the first-order
case as its state vector includes not only the position vector but also
the velocity vector. To analyze the system matrix, we establish two
important lemmas (see Lemmas 1 and 3), which also shows that the
extension of group consensus from single-integrator dynamics to
second-order cases is not trivial. (II) We use Lyapunov first method
[17] instead of Lyapunov second method in most existing literatures to
establish the group consensus criteria, where the upper bound of time
delays can be estimated by Eq. (8). This method avoids to seek the
Lyapunov function and reduces the conservation of our group con-
sensus criteria. (III) Hopf bifurcation theory is used as a different and
efficient method to give the time delay bound. Compared with these
twomethods, it is easy to see that the latter method can provide a less
conservative time delay bound, while the time delay bound is easier to
describe and calculate by using the former method.

The remaining of this paper is organized as follows. In Section 2,
we review some important knowledge in graph theory, formulate
our system models and give some necessary lemmas. Main results
are established in Sections 3. Section 4 gives numerical simulations
to show the effectiveness of our results. Finally, conclusions are
drawn in Section 5.

Notations: We use standard notations throughout this paper. MT is
the transpose of the matrix M. M�1 represents the inverse of the
matrixM. � is the Kronecker product. In denotes the identity matrix of
dimension n. Define ℓ≔f1;2;…;nþm�2g. ΛðMÞ denotes the eigen-
value set of the matrix M. Reð�Þ and Imð�Þ denote real and imaginary
parts, respectively. Matrices, if their dimensions are not explicitly
stated, are assumed to be compatible for algebraic operations.

2. Preliminaries and problem statement

In this section, some basic concepts, results about graph theory
are introduced and some problem formulations, definitions,
assumptions and supporting lemmas are given to obtain the main
results of the paper.

2.1. Graph theory

Let G¼ ðV; E;AÞ be a weighted directed graph of order nþm,
where V ¼ fv1; v2;…; vnþmg is the set of nodes, EDV � V is the set
of edges, and A¼ ½aij�ARðnþmÞ�ðnþmÞ is a weighted adjacency
matrix with real adjacency elements aij. The node indexes belong

to a finite index set φ≔f1;2;…;nþmg. An edge of G is denoted by
eij ¼ ðvj; viÞ. The adjacency elements associated with the edges of
the graph are nonzero, i.e., eijAE if and only if aija0. Moreover, we
assume aii ¼ 0 for all iAφ. The set of neighbors of node vi is
denoted by Ni ¼ fvjAV : ðvj; viÞAEg. The in-degree and out-degree
of node vi are defined, respectively, as

deginðviÞ ¼ ∑
nþm

j ¼ 1
aij; degoutðviÞ ¼ ∑

nþm

j ¼ 1
aji:

LðGÞ ¼ ½lij� is the Laplacian matrix of topology G, and is defined by

lij ¼
�aij; ja i;

∑
nþm

k ¼ 1;ka i
aik; j¼ i:

8><
>:

2.2. Problem formulations

Suppose that the network system consists of nþm agents and
each agent has the dynamics as follows:

_xiðtÞ ¼ viðtÞ;
_viðtÞ ¼ uiðtÞ;

(
ð1Þ

where xiAR, viAR, uiAR are the position, velocity and control
input of the ith agent, respectively.

Without loss of generality, this paper just considers the case that all
the nþm agents are divided into two groups, which can be easily
generalized to multi-agent systems with more groups. Define φ1 : ¼
f1;2;…;ng, φ2≔fnþ1;nþ2;…;nþmg and V1≔fv1; v2;…; vng, V2≔
fvnþ1; vnþ2;…; vnþmg as the index sets and node sets to denote these
two groups, respectively. Then, V ¼ V1⋃V2 and φ≔φ1⋃φ2. Moreover,
define N1i ¼ fvjAV1 : ðvj; viÞAEg, N2i ¼ fvjAV2 : ðvj; viÞAEg and
Ni¼N1i⋃N2i. It is easy to see that N1i, N2i, Ni are the neighbor sets of
node vi in V1, V2 and V, respectively. According to the fact that agents
may not be able to get instant information from each other because of
coupling delays, this paper will take full account of the effect of time
delays and adopt the following control protocol:

uiðtÞ ¼
�2kviðtÞþk ∑

jAN1i

aij½xjðt�τÞ�xiðt�τÞ�þk ∑
jAN2i

aijxjðt�τÞ; iAφ1;

�2kviðtÞþk ∑
jAN1i

aijxjðt�τÞþk ∑
jAN2i

aij½xjðt�τÞ�xiðt�τÞ�; iAφ2;

8>><
>>:

ð2Þ
where k40, τ40 is the time-delay constant, aijZ0; 8 i; jAφ1;
aijZ0; 8 i; jAφ2; aijAR; 8ði; jÞA I ¼ fði; jÞ : iAφ1; jAφ2g [ fði; jÞ :
jAφ1; iAφ2g. If aijo0, it can be considered that agent j has a negative
effect on agent i.

Remark 1. Protocol (2) can be regarded as a generalization of the
control protocol in [27]. In protocol (2), information exchange exists
not only between two agents in the same group but also in different
groups. Besides, k∑jAN1i

aij½xjðt�τÞ�xiðt�τÞ� means that an agent
gets relative information from the other agents in the same group.
k∑jAN2i

aijxjðt�τÞ means that an agent gets absolute information
from the other agents in different group. The main difference
between these two groups is that agents in different group have
different consensus goal according to the task assignment.

Remark 2. The Laplacian matrix L is not diagonally dominant as
the weighted factors aij; ði; jÞA I in control protocol (2) are per-
mitted to be negative in this paper. Thus, compared with the most
existing literatures [1–17], the Laplacian matrix L does not have
the property that all the nonzero eigenvalues have positive real
parts. Lemma 5 in [18] has proved that L has a zero eigenvalue
whose geometric multiplicity is at least two. Hence, the algebraic
multiplicity of zero eigenvalue is at least two. In this paper, we
give the following assumption:
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