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For a class of continuous stirred tank reactor with output constraint and uncertainties, an adaptive
control approach is proposed based on the approximation property of the neural networks. The
considered systems can be viewed as a class of pure-feedback systems. At present, the control approach
for the systems with output constraint is restricted to strict-feedback systems. No effective control
approach is obtained for a general class of pure-feedback systems. In order to control this class of
systems, the systems are decomposed by using the mean value theory, the unknown functions are
approximated by using the neural networks, and Barrier Lyapunov function is introduced. Finally, it is
proven that all the signals in the closed-loop system are bounded and the system output is not violated
by using Lyapunov stability analysis method. A simulation example is given to verify the effectiveness of

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Based on the approximation property of the fuzzy logic systems
and the neural networks [1-5], the stability and control problems of
the real systems had been addressed in [6-15]. Specifically, the
adaptive control of uncertain nonlinear systems has attracted much
attention and some significant works were obtained for nonlinear
systems with completely unknown functions. In [16], Chen et al.
designed an adaptive output feedback neural control for nonlinear
SISO systems with time-delay to ensure the stability of the closed-
loop system. The design idea of the method of [16] is extended to
control nonlinear interconnected large-scale systems in [17]. Based
on the small-gain theory, an adaptive fuzzy output feedback control
was given in [18] for a class of nonlinear SISO systems with un-
modelled dynamics. In [19], a robust adaptive neural network control
algorithm was developed for uncertain nonlinear systems with
unknown gain function and control direction. By combining the
dynamic surface control method and the backstepping method, the
complexity of the controller is reduced. Subsequently, some signifi-
cant works are made in [20-35] for different classes of nonlinear
systems by using the adaptive fuzzy or neural control. The above
several methods in [20-29] were proposed for nonlinear affine
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systems. In [30-35], several adaptive control methods were proposed
to stabilize the uncertain nonlinear nonaffine systems.

At present, the adaptive control for continuous stirred tank
reactor (CSTR) based on the fuzzy logic systems and the neural
networks have obtained many interests. Based on the approxima-
tion properties of the multi-step neural networks, an adaptive
tracking control method was studied in [36] to be applied in CSTR.
In [37], Zhang et al. provided an adaptive fuzzy sliding control to a
general class of nonlinear systems and this method is used to
control CSTR. In [38], a very effective and easy way is used to
implement multiple model control. The simulation results showed
that the fuzzy multiple model control can make a good tracking
performance. In [39,40], two adaptive fuzzy control approaches
were proposed for CSTR and the experiment results were given for
validating the effectiveness. For SISO and MIMO CSTR with dead-
zone, two adaptive neural network control approaches were
presented in [41,42].

A common restriction in the above approaches is that output
constraint problem is not considered. To this end, two adaptive
controls were studied in [43,44] for nonlinear systems with output
constraint by using Barrier Lyapunov function and the output
constraint is not violated. In [45], an adaptive neural output feedback
control algorithm was proposed for a class of nonlinear systems with
output constraint and unknown function to ensure that the closed-
loop system is uniformly bounded and the simulation example is
given to verify the feasibility of the proposed method. The results in
[42,45] can be only to control a class of strict-feedback systems. As
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stated in [30], it is known that the pure-feedback systems are more
general than strict-feedback ones.

In this paper, an adaptive neural network control problem is
solved for a class of CSTR with unknown functions. The neural
networks are used to approximate unknown function of systems.
The considered reactor can be viewed as a class of nonlinear pure-
feedback systems with output constraint.

The main contributions are as follows:

(1) At present, no effective adaptive control method is studied to
control nonlinear pure-feedback systems with output constraint.

(2) To control this class of systems, the novel Barrier Lyapunov
function is chosen and the mean-value theorem is correctly
used to decompose the systems.

Based on the decomposed systems, a stable controller is designed.
Using Lyapunov stability, it is proven that all the signals in the closed-
loop system are bounded and the output constraint is not violated. A
simulation example is illustrated to validate the feasibility of the
approach.

2. System description

Consider the following model of continuous stirred tank reactors
VA = (Cap — Ca)F — VKoexp(Eq/RT)Ca
VpCpdl = FpCp(Tr —T)— hA(T —T¢) (1)
— (AH)VKp x exp(—£8)Ca

where the meanings of some notations are listed in the following

Table 1.
The following variables are introduced

Car—Ca T-T, __E

_ _ F Eq
X1 = Car ° Xy = Tr Y= R‘FF:
_ /E ___hA __KoVe?
t=t 5_FPCP’ Da—ip s

(= AH)pCpr T —Te
B= pCpTF > U= [TF @

Then, Eq. (1) can be expressed as

X1 = —x1+Da(1-x1)exp[x2/(1+ (x2/9))]
Xy = —X2(1+5) +BDg(1—x1) @)
x exp[x2/(1+ (x2/@))] +ou(t)

y=Xi

where x; and x, denote the dimensionless reactant concentration
and mixture temperature, respectively; u is the dimensionless

Table 1
Parameters of the CSTR system.

Symbol  Physical significance

Ca Concentration of component A
F Feed velocity

Car Input concentration of component A
Fc Feed velocity of cooling water
Ko Pre-exponential factor

R Gas constant

Eq Activation energy

p Liquid densities

Tr Feed temperature

Vv Volume of tank

T Reaction temperature

—AH Heat of reaction

h Heat transfer area

Cp Heat capacities

Tc Inlet coolant temperature

F¢ Feed velocity of inlet coolant

coolant flow rate; control target of process is to use the coolant
flow rate u control reactant temperature x,; the physical para-
meters 6, @, B and D, denote the heat transfer coefficient, the
activated energy, heat of reaction, and Damokhler number, respec-
tively; y=x; is the output of system, be constrained in the
compact set |x;| <k, where k, is a number of normal.

Define

f1(%1,%2) = —X1+Da(1—x1)exp X2/ (14+X2 /)]

Fa(x1,%2) = —X2(140) +BDa(1 —x1)exp X2/ (1+X2 /)]
Then, we can rewrite (2) as

x1=f1(x1,%)
Xy = f(x1,%2)+0u(t) 3)
y=x

In this paper, the our goal is to construct an adaptive NN
scheme such that y =x; follows the reference signal y,(t) to a
small set and all the signals in the closed-loop are retained to be
bounded and the output constraint is not violated.

Remark 1. In (3), f(x1,X2) is a nonaffine function of x,. According
to this characteristic, it is known that these systems can be seen as
a class of nonlinear pure feedback system [30].

Remark 2. In [42,45], several kinds of adaptive control methods are
designed to avoid the output constraints of the systems. However,
these methods are proposed for strict-feedback systems and difficult
to be applied in more complex pure feedback systems. Therefore, in
this paper, an adaptive neural network control method is proposed
to guarantee that the system output constraints are not violated for
more complex nonlinear pure-feedback systems.

For the system (3), the assumptions and lemma are given as
follows.

Assumption 1. There exist the constants @>a >0 such that
a < of(X1,X2)/0x, <.

Assumption 2. There exist the constants 5>é >0 such that
8 <0<0.

Assumption 3. For k¢, > 0, there exist the constants 0 <Ay <k,
and A; such that |y,(t)| <Ao and |y4(t)| < A;.

Lemma 1. [36] f(x,u) is assumed to be continuously differentiable
and exists positive definite constant d such that of (x,u)/ou>d > 0.
Then, there exists a continuously function u* =u(x) such that

f(x,u*)=0.

Lemma 2. [45] For any p(lg§lt1ve constant ky,, for all of eq, there exists
le1] < kp, such that log o <

k,,1 —ez

In the following, we w111 be briefly to introduce the approx-
imation ability of the neural networks.

The approximation ability of neural networks has a unique
advantage for pattern recognition, function approximation, etc.
Nonlinear function f(y) : R—R is approximated by the following
RBF neural networks

fo)y=n"c@)+ew)

which, ¢(y) = [¢; (), ...,gN(y)}T : 2R is smoothly known vector
function, N> 1 indicate neural network nodes. &(y) indicates
inherent error approximation of neural networks. ¢;(y),1<i<N
is expressed by Gaussian function as follows:

\2
Gi(y) =exp {—0/;—;)')] >0,0;€£2
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