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a b s t r a c t

There are mainly two methodologies utilized in current sparse PCA calculation, the greedy approach and
the block approach. While the greedy approach tends to be incrementally invalidated in sequentially
generating sparse PCs due to the cumulation of computational errors, the block approach is difficult to
elaborately rectify individual sparse PCs under certain practical sparsity or nonnegative constraints. In
this paper, a simple while effective block coordinate descent (BCD) method is proposed for solving the
sparse PCA problem. The main idea is to separate the original sparse PCA problem into a series of simple
sub-problems, each having a closed-form solution. By cyclically solving these sub-problems in an
analytical way, the BCD algorithm can be easily constructed. Despite its simplicity, the proposed method
performs surprisingly well in extensive experiments implemented on a series of synthetic and real data.
In specific, as compared to the greedy approach, the proposed method can iteratively ameliorate the
deviation errors of all computed sparse PCs and avoid the problem of accumulating errors; as compared
to the block approach, the proposed method can easily handle the constraints imposed on each
individual sparse PC, such as certain sparsity and/or nonnegativity constraints. Besides, the proposed
method converges to a stationary point of the problem, and its computational complexity is
approximately linear in both data size and dimensionality, which makes it well suited to handle
large-scale problems of sparse PCA.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Principal component analysis (PCA) is one of the most classical
and popular tools for data analysis and dimensionality reduction, and
has a wide range of successful applications throughout science and
engineering [1]. By seeking the so-called principal components (PCs),
along which the data variance is maximally preserved, PCA can
always capture the intrinsic latent structure underlying data. Such
information greatly facilitates many further data processing tasks,
such as feature extraction and pattern recognition.

Despite its many advantages, the conventional PCA suffers from
the fact that each component is generally a linear combination of
all data variables, and all weights in the linear combination, also
called loadings, are typically non-zeros. In many applications,
however, the original variables have meaningful physical inter-
pretations. In biology, for example, each variable of gene expres-
sion data corresponds to a certain gene. In such cases, the derived

PC loadings are always expected to be sparse (i.e. contain fewer
non-zeros) so as to facilitate their interpretability. Moreover, in
certain applications, such as financial asset trading, the sparsity of
the PC loadings is especially expected since fewer nonzero load-
ings imply fewer transaction costs.

Accordingly, sparse PCA has attracted much attention in the recent
decade, and a variety of methods for this topic have been developed
[2–23]. The first attempt for this topic is to make certain post-
processing transformation, e.g. rotation by Jolliffe [2] and simple
thresholding by Cadima and Jolliffe [3], on the PC loadings obtained
by the conventional PCA to enforce sparsity. Jolliffe et al. [4] further
advanced a SCoTLASS algorithm by simultaneously calculating sparse
PCs on the PCA model with additional l1-norm penalty on loading
vectors. Better results have been achieved by the SPCA algorithm of
Zou et al. [5], which was developed based on iterative elastic net
regression. D'Aspremont et al. [6] proposed a method, called DSPCA,
for finding sparse PCs by solving a sequence of semidefinite program-
ming (SDP) relaxations of sparse PCA. Shen and Huang [7] developed
a series of methods called sPCA-rSVD (including sPCA� rSVDl0 ,
sPCA� rSVDl1 , and sPCA� rSVDSCAD), computing sparse PCs by low-
rank matrix factorization under multiple sparsity-including penalties.
Journée et al. [8] designed four algorithms, denoted as GPowerl0 ,

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2014.11.038
0925-2312/& 2014 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail addresses: zhao.qian@stu.xjtu.edu.cn (Q. Zhao),

dymeng@mail.xjtu.edu.cn (D. Meng), zbxu@mail.xjtu.edu.cn (Z. Xu),
gaochenqiang@gmail.com (C. Gao).

Neurocomputing 153 (2015) 180–190

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2014.11.038
http://dx.doi.org/10.1016/j.neucom.2014.11.038
http://dx.doi.org/10.1016/j.neucom.2014.11.038
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.11.038&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.11.038&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.11.038&domain=pdf
mailto:zhao.qian@stu.xjtu.edu.cn
mailto:dymeng@mail.xjtu.edu.cn
mailto:zbxu@mail.xjtu.edu.cn
mailto:gaochenqiang@gmail.com
http://dx.doi.org/10.1016/j.neucom.2014.11.038


GPowerl1 , GPowerl0 ;m, and GPowerl1 ;m, respectively, for sparse PCA by
formulating the issue as non-concave maximization problems with l0-
or l1-norm sparsity-inducing penalties and extracting single unit
sparse PC sequentially or block units ones simultaneously. Based on
probabilistic generative model of PCA, some methods have also been
attained [9–12], e.g. the EMPCA method derived by Sigg and
Buhmann [9] for sparse and/or nonnegative sparse PCA. Sriperumbu-
dur et al. [13,14] provided an iterative algorithm called DCPCA, where
each iteration consists of solving a quadratic programming (QP)
problem. Recently, Lu and Zhang [15] developed an augmented
Lagrangian method (ALSPCA briefly) for sparse PCA by solving a class
of non-smooth constrained optimization problems. Additionally,
d'Aspremont et al. [16] derived a PathSPCA algorithm that computes
a full set of solutions for all target numbers of nonzero coefficients.
Very recently, Meng et al. [24] presented another path algorithm by
utilizing the coordinate-pairwise updating strategy. The method can
attain the entire spectrum of solutions of the problem, providing
more insight for sparse PCA solution.

There are mainly two methodologies utilized in the aforemen-
tioned sparse PCA methods. The first is the greedy approach,
including DSPCA [6], sPCA-rSVD [7], EMPCA [9], and PathSPCA [16].
These methods mainly focus on the solving of one-sparse-PC model,
and more sparse PCs are sequentially calculated one-by-one on the
deflated data matrix or data covariance [25]. The second is the block
approach. Typical methods include SCoTLASS [4], GPowerl0 ;m,
GPowerl1 ;m [8], ALSPCA [15], etc. These methods aim to calculate
multiple sparse PCs at once by utilizing certain block optimization
techniques. The general pros and cons of both approaches are listed
in Table 1 for easy comparison. All these properties have been
extensively exhibited in our experiments, as introduced in Section 3.

In this paper, we design a surprisingly simple while effective
block coordinate descent method for solving the sparse PCA
problem. The main idea is to decompose the original large and
complex problem of sparse PCA into a series of small sub-
problems, and then cyclically solve them. Each of these sub-
problems has a closed-form solution, which makes the new
method very easy to implement. Despite its simplicity, the
proposed method performs very well in sparse PCA calculation.
On one hand, as compared to the greedy approach, attributed to its
recursive updating over all sparse PC variables, the proposed
method can iteratively ameliorate the deviation errors of all
computed sparse PCs and avoid the problem of accumulating
errors. On the other hand, as compared to the block approach,
the new method can easily handle the constraints imposed on
each individual sparse PC, such as certain sparsity and/or non-
negative constraints. Furthermore, the proposed method con-
verges to a stationary solution of the original sparse PCA
problem, and its computational complexity is approximately linear
in both data size and dimensionality, which makes it well suited to
handle large-scale problems of sparse PCA. The aforementioned
properties have been extensively substantiated in experiments
implemented on synthetic and real data.

In what follows, the main idea and the implementation details
of the proposed method are first introduced in Section 2. Its
convergence and computational complexity are also analyzed in
this section. The effectiveness of the proposed method is compre-
hensively substantiated based on a series of empirical studies in
Section 3. Then the paper is concluded with a summary and
outlook for future research. Throughout the paper, we denote
matrices, vectors and scalars by the upper-case bold-faced letters,
lower-case bold-faced letters, and lower-case letters, respectively.

2. The block coordinate descent method for sparse PCA

In the following, we first introduce the fundamental models for
the sparse PCA problem.

2.1. Basic models of sparse PCA

Denote the input data matrix as X¼ ½x1; x2;…; xn�T ARn�d,
where n and d are the size and the dimensionality of the given
data, respectively. After a location transformation, we can assume
all fxigni ¼ 1 to have zero mean. Let Σ¼ ð1=nÞXTXARd�d be the data
covariance matrix.

The classical PCA can be solved through two types of optimiza-
tion models [1]. The first is constructed by finding the
rðrdÞ�dimensional linear subspace where the variance of the
input data X is maximized [26]. On this data-variance-
maximization viewpoint, the PCA is formulated as the following
optimization model:

max
V

TrðVTΣVÞ s:t: VTV¼ I; ð1Þ

where TrðAÞ denotes the trace of the matrix A and
V¼ ðv1;v2;…; vrÞARd�r denotes the array of PC loading vectors.
The second is formulated by seeking the r-dimensional linear
subspace on which the projected data and the original ones are as
close as possible [27]. On this reconstruction-error-minimization
viewpoint, the PCA corresponds to the following model:

min
U;V

‖X�UVT‖2F s:t: VTV¼ I; ð2Þ

where ‖A‖F is the Frobenius norm of A, VARd�r is the matrix of PC
loading array and U¼ ðu1;u2;…;urÞARn�r is the matrix of pro-
jected data. The two models are intrinsically equivalent and can
attain the same PC loading vectors [1].

Corresponding to the PCA models (1) and (2), the sparse PCA
problem has the following two mathematical formulations1:

max
V

TrðVTΣVÞ s:t: vTi vi ¼ 1; ‖vi‖prti ði¼ 1;2;…; rÞ; ð3Þ

Table 1
The general pros and cons of the greedy approach and the block approach for the sparse PCA problem.

Greedy approach Block approach

Pros The first several sparse PCs can generally be properly extracted in a sequential
way

Efficient to simultaneously attain large number of sparse PCs

The sparse PCA calculation can be easily implemented under different sparsity
parameter settings (i.e., ti in Eq. (3) and (4))

Convergence to a reasonable solution of the sparse PCA problem with respect
to all sparse PCs sometimes can be proved (e.g., the ALSPCA method [15])

Cons The computation for more sparse PCs tends to be incrementally invalidated due
to the cumulation of computational errors, e.g., the SPCA method tends to be less
effective in our colon data experiments when the number of sparse PCs are
increasing (Section 3.2.2)

Difficult to elaborately rectify each individual sparse PC under certain
requirements of sparse PCs (e.g. the sparsity or nonnegative constraints on
sparse PCs), e.g., in our pitprops data experiments, the GPowerl0 ;m and
GPowerl1 ;m methods cannot derive sparse PCs with preset cardinality settings
(Section 3.2.1)

1 It should be noted that the orthogonality constraints of PC loadings in (1) and
(2) are not imposed in (3) and (4). This is because simultaneously enforcing sparsity
and orthogonality is generally a very difficult (and perhaps unnecessary) task. Like
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