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Recent years have witnessed a surge of interest in hypergraph-based transductive image classification.
Hypergraph-based transductive learning models the high-order relationship of samples by using a
hyperedge to link multiple samples. In order to extend the high-order relationship of samples, we
incorporate linear correlation of sparse representation to hypergraph learning framework to improve
learning performance. In this paper, we present a new transductive learning method called combinative
hypergraph learning (CHL). CHL captures the similarity between two samples in the same category by
adding sparse hypergraph learning to conventional hypergraph learning. And more, we propose two
strategies to combine the two hypergraph learning methods. Experimental results on two image
datasets have demonstrated the effectiveness of CHL in comparison to the state-of-the-art methods and
shown that our proposed method is promising.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Currently, there is widespread interest in the development of
image classification using transductive learning. Because transduc-
tive learning explores not only labeled data but also unlabeled data,
it achieves a performance better than the methods that learn about
classifiers based only on labeled data. Its success is based on one of
the following two assumptions: cluster and manifold assumptions.
The cluster assumption supposes that the decision boundary should
not cross high-density regions, whereas the manifold assumption
means that each class lies on an independent manifold. Therefore,
more and more researchers have been devoted to transductive
learning based on these assumptions in recent years [1-36].
Rosenberg et al. proposed self-training to train object detection
systems [8]. Blum and Mitchell used co-training to classify web
pages and provided empirical results which achieved significant
improvement of hypotheses on real web-page data in practice [9].
Joachims introduced transductive support vector machines (TSVMs)
for text classification [10]. Another important transductive learning
method is graph-based learning, which is the derived form of
hypergraph-based learning on which we have focused in this paper.
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The graph-based learning [15-41] achieves a promising perfor-
mance between the existing transductive learning methods. Its
development goes through two stages: simple-graph learning and
hypergraph learning. This type of learning is built on a graph, in
which vertices are samples and edge weights indicate the similarity
between two samples. However, the simple-graph learning meth-
ods consider only the pairwise relationship between two samples,
and they ignore the relationship in a higher order. Hypergraph
learning aims to get the relationship between several samples in a
higher order. Unlike a simple graph that has an edge between
two vertices, a set of vertices is connected by a hyperedge in a
hypergraph, and each hyperedge is assigned a weight. Hypergraph
learning derives from simple-graph learning, and thus it achieves a
promising performance in many applications. For example, Agarwal
et al. utilized hypergraph to clustering by using clique average [14].
Zass and Shashua adopted hypergraph in image matching by using
convex optimization [15]. Sun et al. utilized hypergraph to problems
of multi-label learning [16]. Huang et al. applied hypergraph cut to
video segmentation [17]. Tian et al. proposed hypergraph-based
learning algorithm to classify gene expression data by using bio-
logical knowledge as a constraint [18]. Huang et al. formulated the
task of image clustering as a problem of hypergraph partition [52].
A hypergraph-based image retrieval approach is proposed in [19].
This approach constructs a hypergraph by generating a hyperedge
from each sample and its neighbors, and hypergraph-based ranking
is then performed. Wong and Lu proposed hypergraph-based 3-D
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object recognition [20]. Bu et al. [21] developed music recommen-
dation by modeling the relationship of different entities through a
hypergraph to include music, tag, and users.

In hypergraph learning, the weights of the hyperedges are empi-
rically set according to certain rules. Zhou et al. connected k neighbor
points of a given point as a hyperedge [37]. Yu et al. proposed a
hypergraph learning method by adaptively coordinating the weights
of the hyperedge [38]. In essence, they chose multiple neighborhoods
to construct multiple hyperedges for a given point. By this way, how
to define a hyperedge and the weight of a hyperedge is the
succeeding problem we should take into account. There are mainly
two methods to select the neighborhood of a given point, one is to
define a hyperedge with fixed number neighbor points, and the
other one is to define a ball whose radius is less than some threshold.
However, these hypergraph-based methods focus only on proximity
relation for distance. There is some other high-order relationship,
such as linear relationship. For example, given two vectors a and b
for existing a=k*b, the distance between a and b may be very large,
but, they are similar for one factor difference based on linear
relationship. Therefore, the linear relationship is another one we
should take into account.

This paper takes into account the clustering assumption that the
similar points in feature space more likely belong to the same
category. Then, we define the similarity by two assumptions that we
call as distance-similarity and linear-similarity. Distance-similarity is
that the points derived from a category are located close to each
other. The neighborhood size of the hypergraph based on this assu-
mption is chosen as a fixed number. Linear-similarity is that a data
point can more likely be represented linearly by the data points
nearby which belong to the same category as this data point. It is
analogous to manifold assumptions aforementioned. The neighbor-
hood size of the hypergraph based on this assumption is unfixed
since it is decided by the sparse representation method. Inspired by
the two assumptions, we construct the following two kinds of
hypergraphs on a data set, one is conventional hypergraph which
is based on the distance-similarity, the other one is sparse hyper-
graph which is based on linear-similarity and derived from the
thinking in Refs. [53,54]. We linearly combine the two hypergraph
learning methods by two strategies. The first strategy is to combine
the hyperedges of the two hypergraphs to form a new hyperedge
set. The second strategy is to linearly combine the confidence of the
labeling of the two hypergraph learning methods to form a new
confidence of the labeling to define the label of data points.

Table 1
Important notations used in this paper.

The contributions of this paper are as follows:

1) A novel algorithm named Combinative Hypergraph Learning
(CHL) is proposed for image classification. To consider the high-
order information, we incorporate sparse representation into the
standard hypergraph learning framework. Hence, our algorithm
achieves a better performance than that with only conventional
hypergraph learning or with only sparse hypergraph learning.

2) We provide two strategies to combine linearly conventional
hypergraph learning and sparse hypergraph learning. The essence
is that we combine linearly the results of the two hypergraph lea-
rning methods with same weights for one strategy and with diff-
erent weights for the other strategy.

3) We conduct comprehensive experiments to empirically analyze
our algorithm on two image databases. The experimental results
demonstrate that our algorithm outperforms other methods incl-
uding Transductive SVM [10], Simple Graph-Based Learning [50],
and Semi-supervised Discriminant Analysis (SDA) [42,51] classifi-
cations.

The rest of this paper is organized as follows. Section II desc-
ribes the proposed image classification by combinative hypergraph
learning. Section Il shows experiments on practical image data-
sets. Section IV concludes the paper.

2. Hypergraph learning

This section introduces conventional hypergraph learning and
sparse hypergraph learning first, and shows combinative hyper-
graph learning theory with two strategies in the following text. In
Table 1, we provide important notations used in the rest of this
paper to present the technique details of the proposed method.
Fig. 1 illustrates the whole framework of our method.

2.1. Conventional hypergraph learning

Given c categories of images including m training data points (X1,
Y1) - (Xm, ¥Ym), and n testing data points (X;,,,1, 0), ..., (Xm4n 0),
where x;eRY, 1<i<m+n is sampled from the input space;
¥ =[0,..,1,....0]"eR", 1<i<m, is the label vector of x;, where
the g-th component is 1 if x; belongs to the g-th category, otherwise,
0; and 0 is a vector with ¢ components of zero.

Notations Descriptions

H=(x, ¢) The representation of a hypergraph, where x and ¢ indicate the sets of vertices and hyperedges, respectively

A The incidence matrix for the hypergraph

dist The distance between two samples

@ The diagonal matrix of the vertex degrees

v The diagonal matrix of the hyperedge degrees

® The diagonal weight matrix and its (i,i)-th element is the weight of the i-th hyperedge

L The constructed hypergraph Laplacian matrix

Yi The label vector for i-th class. Its j-th element is 1 if the j-th object belongs to the i-th class, and otherwise it is 0.
F=[f1, fo,...fc] F represents the relevance score matrix for all samples, and f; is the to-be-learnt relevance score vector for class i.
c The number of classes in the dataset

m The number of labeled images in the dataset

n The number of images in the dataset

l The number of hyperedges

AP, dist’P, FP The superscript “sp” denotes sparse-based which show difference to A, dist and F, respectively

A* F* The superscript “*” denotes the concatenated results.

Y =I[¢1.62.---64l The base of sparse representation

-
W =[wi,Wy,...Wq]
W=[wi,wy,..wy]

The coefficient vector of sparse representation
The coefficient matrix of sparse representation
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