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Abstract

Winner-Takes—All (WTA) prescriptions for learning vector quantization (LVQ) are studied in the framework of a model situation:
two competing prototype vectors are updated according to a sequence of example data drawn from a mixture of Gaussians. The theory
of on-line learning allows for an exact mathematical description of the training dynamics, even if an underlying cost function cannot be
identified. We compare the typical behavior of several WTA schemes including basic LVQ and unsupervised vector quantization. The
focus is on the learning curves, i.e. the achievable generalization ability as a function of the number of training examples.
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1. Introduction

Learning vector quantization (LVQ) as originally
proposed by Kohonen [10] is a widely used approach to
classification. It is applied in a variety of practical
problems, including medical image and data analysis, e.g.
proteomics, classification of satellite spectral data, fault
detection in technical processes, and language recognition,
to name only a few. An overview and further references can
be obtained from [1].

LVQ procedures are easy to implement and intuitively
clear. The classification of data is based on a comparison
with a number of so-called prototype vectors. The
similarity is frequently measured in terms of Euclidean
distance in feature space. Prototypes are determined in a
training phase from labeled examples and can be inter-
preted in a straightforward way as they directly represent
typical data in the same space. This is in contrast with, say,
adaptive weights in feedforward neural networks or
support vector machines which do not allow for immediate
interpretation as easily. Among the most attractive features
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of LVQ is the natural way in which it can be applied to
multi-class problems.

In the simplest so-called hard or crisp schemes any
feature vector is assigned to the closest of all prototypes
and the corresponding class. In general, several prototypes
will be used to represent each class. Extensions of the
deterministic assignment to a probabilistic soft classifica-
tion are conceptually straightforward but will not be
considered here.

Plausible training prescriptions exist which employ the
concept of on-line competitive learning: prototypes are
updated according to their distance from a given example
in a sequence of training data. Schemes in which only the
winner, i.e. the currently closest prototype is updated have
been termed winner-takes-all algorithms and we will
concentrate on this class of prescriptions here.

The ultimate goal of the training process is, of course, to
find a classifier which labels novel data correctly with high
probability, after training. This so-called generalization
ability will be in the focus of our analysis in the following.

Several modifications and potential improvements of
Kohonen’s original LVQ procedure have been suggested.
They aim at achieving better approximations of Bayes
optimal decision boundaries, faster or more robust
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convergence, or the incorporation of more flexible metrics,
to name a few examples [5,8-10,16].

Many of the suggested algorithms are based on plausible
but purely heuristic arguments and they often lack a
thorough theoretical understanding. Other procedures can
be derived from an underlying cost function, such as
Generalized Relevance LVQ [8,9] or LVQ2.1, the latter
being a limit case of a statistical model [14,15]. However,
the connection of the cost functions with the ultimate goal
of training, i.e. the generalization ability, is often unclear.
Furthermore, several learning rules display instabilities and
divergent behavior and require modifications such as the
window rule for LVQ2.1 [10].

Clearly, a better theoretical understanding of the
training algorithms should be helpful in improving their
performance and in designing novel, more -efficient
schemes.

In this work we employ a theoretical framework which
makes possible a systematic investigation and comparison
of LVQ training procedures. We consider on-line training
from a sequence of uncorrelated, random training data
which is generated according to a model distribution. Its
purpose is to define a non-trivial structure of data and
facilitate our analytical approach. We would like to point
out, however, that the training algorithms do not make use
of the form of this distribution as, for instance, density
estimation schemes.

The dynamics of training is studied by applying
the successful theory of online learning [2,6,12] which
relates to ideas and concepts known from statistical
physics. The essential ingredients of the approach are (1)
the consideration of high-dimensional data and large
systems in the so-called thermodynamic limit and (2) the
evaluation of averages over the randomness or disorder
contained in the sequence of examples. The typical
properties of large systems are fully described by only a
few characteristic quantities. Under simplifying assump-
tions, the evolution of these so-called order parameters
is given by deterministic coupled ordinary differential
equations (ODE) which describe the dynamics of on-line
learning exactly in the thermodynamic limit. For re-
views of this very successful approach to the investigation
of machine learning processes consult, for instance,
[2,6,17].

The formalism enables us to compare the dynamics and
generalization ability of different WTA schemes including
basic LVQ1 and unsupervised vector quantization (VQ).
The analysis can readily be extended to more general
schemes, approaching the ultimate goal of designing novel
and efficient LVQ training algorithms with precise
mathematical foundations.

The paper is organized as follows: in the next section we
introduce the model, i.e. the specific learning scenarios and
the assumed statistical properties of the training data. The
mathematical description of the training dynamics is briefly
summarized in Section 3, technical details are given in an
Appendix. Results concerning the WTA schemes are

presented and discussed in Section 4 and we conclude with
a summary and an outlook on forthcoming projects.

2. The model
2.1. Winner-takes-all algorithms

We study situations in which input vectors & e RV
belong to one of two possible classes denoted as o = +£1.
Here, we restrict ourselves to the case of two prototype
vectors wg where the label S =41 (or + for short)
corresponds to the represented class.

In all WTA-schemes, the squared Euclidean distances
ds(&) = (€ — wg)® are evaluated for S = +1 and the vector
¢ is assigned to class g if d, <d_,.

We investigate incremental learning schemes in which a
sequence of single, uncorrelated examples {&",c*} is
presented to the system. The analysis can be applied to a
larger variety of algorithms but here we treat only updates
of the form

wo_ o u—l “ ;
we=wg +Awg with

n _
Awls = 059(S,0") (&' — h. (1)
Here, the vector wi denotes the prototype after presenta-
tion of u examples and the learning rate # is rescaled with
the vector dimension N. The Heaviside term

1 if x>0,

B wo_ e : _
O5=0d_g—d ) with O(x) {O else

singles out the current prototype wg_l which is closest to
the new input & in the sense of the measure
ds= (& — wgfl)z. In this formulation, only the winner,
say, wg can be updated whereas the looser w_g remains
unchanged. The change of the winner is always along the
direction =+(&" — wg_l). The function ¢(S,¢*) further
specifies the update rule. Here, we focus on three special
cases of WTA learning:

(I) LVQLI: g(S,0) = So = +1 (resp. —1) for S = g (resp.
S+#a). This extension of competitive learning to
labeled data corresponds to Kohonen’s original
LVQI. The update is towards & if the example
belongs to the class represented by the winning
prototype, the correct winner. On the contrary, a
wrong winner is moved away from the current input.

(IT) LVQ+: ¢(S,0) = O(Sa) = +1 (resp. 0) for S=o¢
(resp. S#0). In this scheme the update is non-zero
only for a correct winner and, then, always positive.
Hence, a prototype wg can only accumulate updates
from its own class ¢ = S. We will use the abbrevia-
tion LVQ+ for this prescription.

(III) VQ: ¢(S,0) = 1. This update rule disregards the
actual data label and always moves the winner
towards the example input. It corresponds to
unsupervised vector quantization and aims at finding
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