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Abstract

The issue of exponential robust stability for interval delayed neural networks with variable delays is studied. An approach combining

the Lyapunov–Krasovskii functional with the differential inequality and linear matrix inequality techniques is taken to investigate this

problem. The proposed criterion for exponential stability generalizes and improves those reported recently in the literature. Two

numerical examples are also presented to illustrate our results.
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1. Introduction

In the past decade, the issue on the stability of delayed
neural networks (DNN) has received intensive attention,
and a large number of stability criteria for DNN have been
proposed [1,2,4–10,12,14–21,23,24,26–33]. However, the
stability of a neural network may often be destroyed by
its unavoidable uncertainty due to the existence of
modeling errors, external disturbance and parameter
fluctuation during the implementation on very-large-
scale-integration chips. Thus, it is important to investigate
the robust stability of the networks against such errors and
fluctuation. In order to formulate this kind of DNN with
uncertainty, Liao and Yu [19] have extended the model of
DNN to the so-called interval DNN (IDNN). Now, several
robust stability criteria for these systems have been derived
[19,17,16,1,4,14,32]. However, those results reported in
Refs. [19,17,16,1] required that the activation functions
should be monotonic or that the parameters of systems
should be limited strictly. In addition, to the best of our
knowledge, there does not seem to be much (if any) study

on the global exponential robust stability for IDNNs with
time-varying delays via LMI approach so far. Moreover, to
derive the stability conditions for the DNNs with invari-
able parameters and time-varying delays, the authors
always assume that delay functions are differentiable and
their derivatives are bounded (in general, less than 1). In
practice, the switch speed in circuits and axonal transmis-
sion delays in neural networks are often not differentiable
and even not continuous. Therefore, how to analyze the
stability problem for IDNN with non-differentiable delays
becomes attractive issue.
Motivated by the above reasons, we study the global

robust stability for IDNN with the time delays in this
paper. Several criteria for the global robust stability are
proposed. Distinct from the previous investigations, the
current study focuses on the global robust stability by using
a combination of Lyapunov–Krasovskii functional [11]
with the differential inequality and linear matrix inequality
(LMI) technique [3]. The main advantages of the present
approach include: (1) It leads to less conservation and less
restriction, because we does not require that the delay
functions are differentiable and at the same time we
only require that the activation functions are Lipschitz-
continuous. (2) It can be efficiently verified via solving
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numerically the LMI using interior-point algorithms or just
the LMI-toolbox in Matlab.

The rest of this paper is organized as follows: In the next
section, the problem to be studied is formulated and some
definitions, notations and lemmas are presented. Based on
the Lyapunov–Krasovskii stability theorem [4], in combi-
nation with the differential inequality and LMI technique,
a new exponential robust stability condition for IDNN
with the time-varying delays is derived in Section 3. In
Section 4, several numerical examples are given to
demonstrate the effectiveness of our results. Finally,
conclusions are drawn in Section 5.

2. Formulations and preliminaries

Consider the delayed neural networks described by the
following functional differential equations:

_uiðtÞ ¼ � aiuiðtÞ þ
Xn

j¼1

wijgj ujðtÞ
� �

þ
Xn

j¼1

vijgj uj t� tjðtÞ
� �� �

þ I i; i ¼ 1; 2; . . . ; n ð1aÞ

or

_uðtÞ ¼ �AuðtÞ þWGðuðtÞÞ þ VGðuðt� tðtÞÞÞ þ I , (1b)

where uðtÞ ¼ u1ðtÞ; u2ðtÞ; . . . ; unðtÞ½ �
T is the state vector of the

neural networks, A ¼ diagða1; a2; . . . ; anÞ is a diagonal
matrix with positive entries, i.e., ai40, W ¼ ðwijÞn�n, V ¼

ðvijÞn�n are the connection weight matrix and de-
layed connection weight matrix, respectively, GðuðtÞÞ ¼

g1 u1ðtÞð Þ; g2 u2ðtÞð Þ; . . . ; gn unðtÞð Þ
� �T

denotes the neuron acti-
vation function vector, and I ¼ ½I1; I2; . . . ; In�

T is a
constant external input vector. tðtÞ ¼ ðt1ðtÞ; t2ðtÞ; . . . ;
tnðtÞÞÞ

T represents the time-varying axonal signal transmis-
sion delay vector with 0ptiðtÞpt̄oþ1.

Throughout this paper, we always assume that the
activation functions are bounded and satisfy Lipschitz’s
condition:

(H) gi ði ¼ 1; 2; . . . ; nÞ is bounded on R, and there exist
constants Mi40 such that, for any x; y 2 R, i ¼ 1; 2; . . . ; n,
jgiðxÞ � giðyÞjpMijx� yj.

Remark 1. It is easy to see that the assumption (H) implies
that the activation functions are continuous but not always
monotonic. Also, we do not require that the time-varying
delay be differentiable. Thus, our requirements for the
activation functions and time-varying delay are weaker
than those in Refs. [19,17,16,1,4].

In practice, the deviations and perturbations of the
weights of the connections are bounded in general. Thus,
we may intervalize the quantities mentioned above as
follows:

AI ¼ A ¼ diagðaiÞn�njaipaipāi; i ¼ 1; 2; . . . ; n
� �

,

W I ¼ W ¼ ðwijÞn�njwijpwijpw̄ij ; i; j ¼ 1; 2; . . . ; n
n o

,

VI ¼ V ¼ ðvijÞn�njvijpvijpv̄ij ; i; j ¼ 1; 2; . . . ; n
� �

. ð2Þ

Moreover, for notational convenience, we define, for
i; j ¼ 1; 2; . . . ; n,

A ¼ diagðaiÞn�n; w�ij ¼ max jwijj; jwijj

n o
,

v�ij ¼ max jvijj; jvijj
� �

ð3Þ

and

bi ¼
Xn

j¼1

w�ij

Xn

k¼1

w�kj

 !
; ci ¼

Xn

j¼1

v�ij

Xn

k¼1

v�kj

 !
,

B ¼ diagðbiÞn�n; C ¼ diagðciÞn�n. ð4Þ

Also, we use PT;P�1; lMðmÞðPÞ to denote the transpose
of, inverse of, and the maximum (minimum) eigenvalue
of a square matrix P, respectively. The vector norm is
taken to be Euclidian, denoted by k � k. And we use
P40 ðo0;p0;X0Þ to denote a symmetrical positive
(negative, semi-negative, semi-positive) definite matrix P.
It is well known that bounded activation functions

always guarantee the existence of an equilibrium point for
system (1). For notational convenience, we will always shift
an intended equilibrium point u� ¼ ðu�1; u

�
2; . . . ; u

�
nÞ

T
2 Rn of

system (1) to the origin by letting xðtÞ ¼ uðtÞ � u�, which
yields the following system:

_xðtÞ ¼ �AxðtÞ þWF xðtÞð Þ þ VF xðt� tðtÞÞð Þ, (5)

where xðtÞ ¼ x1ðtÞ;x2ðtÞ; . . . ; xnðtÞ½ �
T is the state vector of

the transformed system, and F ðxðtÞÞ ¼ f 1 x1ðtÞð Þ;
�

f 2 x2ðtÞð Þ; . . . ; f n xnðtÞð Þ�T denotes the activation function
vector with f iðxiðtÞÞ ¼ giðxiðtÞ þ u�i Þ � giðu

�
i Þ, i ¼ 1; 2; . . . ; n.

Obviously, the equilibrium point u� of system (1) with
(H) is globally exponentially robustly stable if and only if
the origin of system (5) is globally robustly exponentially
stable. Thus in the sequel, we only consider global robustly
stability of the trivial solution of system (5).
Before stating the main results, we first need the

following preliminaries.

Definition 1 (Zhang [31], Zhou et al. [33], Cao and Chen

[4]). The equilibrium point u� ¼ ðu�1; u
�
2; . . . ; u

�
nÞ

T
2 Rn is

said to be globally exponentially stable, if there exist
constants e40 and K40 such that

Pn
i¼1juiðtÞ � u�i jp

Kkf� u�ke��t. Furthermore, system (1) with uncertainty
is said to be globally exponentially robust stable if its
unique equilibrium point u� 2 Rn is globally exponentially
stable for any A 2 AI , W 2W I , V 2 V I .

Definition 2 (Huang and Cao [12]). For any continuous
function h : R! R, its Dini’s time-derivative is defined as

_hðtÞ ¼ lim
y!0þ

sup
hðtþ yÞ � hðtÞ

y
.

Lemma 1 (Sanchez and Perez [25]). Given any real

matrices S1;S2;S3 of appropriate dimensions and a scalar

�40 such that 0oS3 ¼ ST
3 . Then, the following inequality

holds:

ST
1S2 þ ST

2S1p�ST
1S3S1 þ �

�1ST
2S
�1
3 S2.
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