

Spine Deformity 2 (2014) 489-492

Are Rib Versus Spine Anchors Protective Against Breakage of Growing Rods?

Kent T. Yamaguchi, Jr, MD^a, David L. Skaggs, MD, MMM^{b,*}, Shaun Mansour, BA^b, Karen S. Myung, MD, PhD^b, Muharram Yazici, MD^c, Charles Johnston, MD^d, George Thompson, MD^e, Paul Sponseller, MD^f, Behrooz A. Akbarnia, MD^g, Michael G. Vitale, MD, MPH^h, Growing Spine Study Group

^aDepartment of Orthopaedic Surgery, University of California—Los Angeles, Los Angeles, CA, USA

^bChildren's Orthopaedic Center, Children's Hospital Los Angeles, 4650 W Sunset Boulevard, Mailstop #69, Los Angeles, CA 90027, USA

> ^cDepartment of Orthopaedic Surgery, Hacettepe University Faculty of Medicine, 06100 Sihhiye-Ankara/Turkey

^dDepartment of Orthopaedic Surgery, Texas Scottish Rite Hospital for Children, 2222 Welborn St, Dallas, TX 75219, USA

^eDepartment of Orthopaedic Surgery, Rainbow Babies and Children's Hospital, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106, USA

^fDepartment of Orthopaedic Surgery, Johns Hopkins University, 601 North Caroline Street JHOC #5215, Baltimore, Maryland 21287-0882, USA

^gSan Diego Center for Spinal Disorders, 4130 La Jolla Village Dr, La Jolla, CA 92037, USA

^hDepartment of Orthopaedic Surgery, New YorkePresbyterian Morgan Stanley Children's Hospital, Columbia University Medical Center, 3959 Broadway, New York, NY 10032, USA Received 12 February 2014; revised 30 June 2014; accepted 10 August 2014

Author disclosures: KTY (none); DLS (grants from POSNA, Scoliosis Research Society; personal fees from Biomet, Medtronic, Stryker, Wolters Kluwer Health-Lippincott Williams & Wilkins; non-financial support from Growing Spine Study Group, Scoliosis Research Society, Growing Spine Foundation Medtronic Strategic Advisory Board; personal fees from expert testimony; other from Medtronic, Stryker, Biomet, Medtronic, outside the submitted work; patent issued by Medtronic); SM (none); KSM (none); MY (personal fees from DePuy Synthes, Stryker, outside the submitted work); CJ (other from Medtronic, outside the submitted work); GT (personal fees as Co-Editor, Journal of Pediatric Orthopaedics, Lippincott, Williams and Wilkins; personal fees from Medical Advisory Board, Shriner's Hospital for Children; non-financial support as President/CEO SICOT Foundation; non-financial support from OrthoPediatrics; personal fees from Ortho-Pediatrics, non-financial support from SpineForm, outside the submitted work; son works for nuVasive Medical Technologies); PS (other from Journal of Bone and Joint Surgery, Oakstone Medical, Globus Medical, DePuy Synthes Spine, outside the submitted work); BA (personal fees from Kspine, K2M, Ellipse Technologies; grants and personal fees from Nuvasive, OREF, DePuy Spine, outside the submitted work); MV (non-financial support from AAP Section on Orthopaedics; personal fees, non-financial support and other from CSSG; personal fees from Stryker, Biomet; grants from AOSpine, CSSG, OREF, Scoliosis Research Society; grants and other from POSNA, grants and non-financial support from Medtronic, grants from OMeGA, other from Broadwater [Biomet, Synthes, Stryker, Medtronic, K2]; other from FoxPSDSG, outside the submitted work).

This work was supported by a research grant provided by the Growing Spine Foundation.

*Corresponding author. Children's Orthopaedic Center, Children's Hospital of Los Angeles, 4650 W Sunset Boulevard, Mailstop #69, Los Angeles, CA 90027. Tel.: (323) 361-4658; fax: (323) 361-1310.

E-mail address: dskaggs@chla.usc.edu (D.L. Skaggs).

Abstract

Study Design: Retrospective multicenter, case-control study.

Objective: To compare the risks of rod breakage and anchor complications between distraction-based growing rods with proximal spine versus rib anchors.

Summary of Background Data: Rod breakage is a known complication of distraction-based growing rod instrumentation.

Methods: A total of 176 patients met inclusion criteria: minimum 2-year follow-up, younger than age 9 years at index surgery, non-Vertical Expandable Prosthetic Titanium Rib distraction-based growing rods, and known anchor locations. Mean follow-up was 56 months (range, 24-152 months). Survival analyses using Cox proportional hazards model (accounting for varying lengths of follow-up) of rod breakage, anchor complications, preoperative Cobb angle, number of growing rods, age, and number of levels instrumented were performed using a significance level of p < .05.

Results: Thirty-four patients had rib-anchored growing rods and 142 had spine-anchored growing rods. This analysis found that proximal rib-anchored growing rods have a 23% risk of lifetime rod breakage compared with spine-anchored growing rods (6% vs. 29%) (p = .041) without a significant increase in risk of anchor complications (38% vs. 33%) (p = .117). The number of implanted rods (p = .839), age (p = .649), and number of instrumented levels (p = .447) were not statistically significant regarding rod breakage risk, although higher preoperative Cobb angles were significant (p = .014).

Conclusions: Preoperative Cobb angle appears to be the most influential factor in determining whether growing rods break (p = .014). Univariate analysis found that rib anchors were associated with less than one-fourth the risk of rod breakage than spine anchors (p = .04) but multivariate analysis found no significant association between anchors and rod breakage (p = .07). This trend suggests that rib-anchored growing rod systems may be associated with less rod breakage because the system is less rigid as a result of some "slop" at the hook—rib interface, as well as the normal motion of the costovertebral joint.

Keywords: Rod breakage; Distraction-based growing rods; Complications; Anchors

Introduction

Rod breakage is a well-documented complication of spinal instrumentation without fusion (growing rods). Since their introduction in 1984 by Moe et al. [1], there have been a few studies evaluating the risk factors involved in rod breakage [2]. To date, there have been no studies to evaluate the effect of spine versus rib anchors on the risk of rod breakage. The purpose of this study was to evaluate whether there is a difference in the risk of rod breakage between proximally based spine and rib anchors.

Materials and Methods

This was a retrospective, multicenter study of subjects who underwent spinal growing rod implantation surgery from 1990 to 2010. The patient population was obtained through a multicenter early-onset scoliosis database. The researchers obtained institutional review board approval from all sites and followed all protective measures.

Inclusion criteria for the study were that subjects had growing rod implants, were aged less than 9 years at index surgery, had a minimum of 2 years of follow-up from index surgery, and had recorded information of proximal and distal growing rod anchors. The authors included growing rods with proximal spine anchors and proximal rib anchors and excluded Vertical Expandable Prosthetic Titanium Rib implants, subjects with Jeune syndrome, and subjects with Jarcho—Levin syndrome (Figs. 1 and 2).

The researchers performed a retrospective review of the collected clinical data and radiographs. Data collected

Fig. 1. Posteroanterior (PA) radiograph of a patient with proximal spine anchors.

Download English Version:

https://daneshyari.com/en/article/4095614

Download Persian Version:

https://daneshyari.com/article/4095614

Daneshyari.com