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Abstract

Complexity pursuit is an extension of projection pursuit to time series data and the method is closely related to blind separation of

time-dependent source signals and independent component analysis (ICA). In this paper, we consider the estimation of the data model of

ICA when Gaussian noise is present and the independent components are time dependent. We derive a simple algorithm combining

Gaussian moments and complexity pursuit for noisy ICA. Validity and performance of the described approaches are demonstrated by

computer simulations.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Recently, blind source separation by independent
component analysis (ICA) has received attention because
of its potential signal processing applications. The model of
ICA consists of mixing independent random variables,
usually linearly [1–3,6,10,12,13]. In many applications,
however, what is mixed is not random variables but time
signals, or time series. Complexity pursuit, whose goal is to
find projections of time series that have interesting
structure, is introduced by Hyvärinen [9]. It is an extension
of projection pursuit [5] to time series data having
interesting structure, defined using criteria related to
Kolmogoroff complexity [11] or coding length. Time series
which have the lowest coding complexity are considered
the most interesting. This idea is probably connected to
information-processing principles used in the brain. Shi
et al. [14] derived a simple approximation of Kolmogoroff
complexity that takes into account both the non-Gaus-
sianity and the autocorrelations of the time series. And

they developed a fixed-point algorithm for complexity
pursuit. The method is closely related to blind separation
of time-dependent source signals and ICA.
In this paper, we consider the estimation of the data

model of ICA when Gaussian noise is present and the
independent components (ICs) are time dependent. Hyvär-
inen [7,8] introduced a modification of the FastICA
algorithm [6] using the Gaussian moments for the problem
of estimating the data model of ICA in the presence of
Gaussian noise when the ICs are random variables.
Motivated by these methods, we combine Gaussian
moments to complexity pursuit and derive a simple
algorithm for noisy ICA when the ICs are time dependent.

2. Complexity pursuit and Gaussian moments

In this section, we consider the estimation of the ICA
model when the ICs are time signals. The model is
expressed by the following noisy linear model:

xðtÞ ¼ AsðtÞ þ nðtÞ, (1)

where xðtÞ ¼ ðx1ðtÞ; . . . ;xMðtÞÞ
T
2 RM is a sensor signal,

A 2 RM�M is an unknown mixing matrix, sðtÞ ¼

ðs1ðtÞ; . . . ; sM ðtÞÞ
T
2 RM is the source signal and nðtÞ is the

noise which is modeled as Gaussian with zero mean and
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covariance matrix R (i.e., R ¼ EfnðtÞnðtÞTg), where t ¼

1; . . . ;T and t is the time index. The source signals are
assumed independent such that pðsðtÞÞ ¼

QM
i¼1pðsiðtÞÞ where

p denotes the probability density function. For simplicity,
we assume that the noise covariance matrix R is known and
the source signals have zero mean and unit variance.

2.1. Quasi-whitening

A useful preprocessing strategy in ICA is to first whiten
the observed variables. However, the effect of noise must be
considered in the preliminary whitening of the data. If the
noise covariance matrix is known, the ordinary whitening
should be replaced by the ‘quasi-whitening’ operation
~xðtÞ ¼ ðC� RÞ�1=2xðtÞ, where C ¼ EfxðtÞxðtÞTg is the
covariance matrix of the observed noisy data. The quasi-
whitened data ~x follows a noisy ICA model as well, i.e.,
~xðtÞ ¼ BsðtÞ þ ~nðtÞ, with an orthogonal mixing matrix B

(from EfxðtÞxðtÞTg ¼ C ¼ AAT
þ R and B ¼ ðC� RÞ�1=2A),

and the following noise covariance matrix [7,8]:

~R ¼ Ef~nðtÞ~nðtÞTg ¼ ðC� RÞ�1=2RðC� RÞ�1=2. (2)

2.2. Predictive coding and approximation of complexity

Kolmogoroff complexity is based on the interpretation
of coding length as structure [9]. Most natural signals
have redundancy; parts of the signal can be efficiently
predicted from other parts. Such a signal can be coded, or
compressed, so that the code length is shorter than the
original code length. We could thus measure the amount of
structure of the signal by the amount of compression that is
possible in coding the signal. For signals of fixed length,
the structure could be measured by the length of the
shortest possible code for the signal. This is a nonrigorous
definition of Kolmogoroff complexity [9] (for a more
rigorous definition of the concept, see the paper [11]).

Denote the noise-free data by yðtÞ ¼ BsðtÞ, the basic idea in
the complexity pursuit is to find projections wTyðtÞ such that
the Kolmogoroff complexity of the projection is minimized.

First, we derive an approximation of the Kolmogoroff
complexity of a scalar signal zðtÞðt ¼ 1; . . . ;TÞ [14]. We
consider predictive coding of a scalar signal. The value zðtÞ

is predicted from the preceding values by some function to
be specified:

ẑðtÞ ¼ f ðzðt� 1Þ; . . . ; zð1ÞÞ. (3)

To code the actual value zðtÞ, the residual,

dzðtÞ ¼ zðtÞ � ẑðtÞ, (4)

is coded by a scalar quantization method. According to the
basic principles of information theory [4], the length of this
code is asymptotically approximated by the sum of the
entropies H of the residuals. The coding complexity can be
approximated by [9,14]:

K̂ðzÞ ¼ THðdzÞ, (5)

where dz denotes a random variable with the marginal
distribution of the residual.
To use the approximation in Eq. (5) in practice, we need

to fix the structure of the predictor f and find an
approximation of the entropy of dz. We use a computa-
tionally simple predictor structure, given by a linear
autoregressive model:

ẑðtÞ ¼
X
t40

atzðt� tÞ. (6)

To approximate the entropy of dz, we assume that we
know a good approximation of the (negative) logarithm of
the probability density of the residual, denoted by G. Then
we obtain the approximation [14]

HðdzÞ � EfGðdzÞg. (7)

In ICA, if the signals to be reconstructed satisfy certain
properties, an exact form of the contrast function is not
required in order to achieve the desired estimation results
[9,14]. We may therefore optimistically assume that the
exact form of the function G is not very important here
either, as long as it is qualitatively similar enough to the
(negative) logarithm of the probability density of the
residual [9,14].
To find the ‘most interesting’ directions w, use the above

approximation of complexity for zðtÞ ¼ wTyðtÞ. Thus, we
can express the approximation of complexity as a contrast
function of w only [14]:

min
kwk2¼1

K̂ðwTyðtÞÞ ¼ E G wT yðtÞ �
X
t40

atyðt� tÞ

 ! !( )
.

(8)

Using the contrast function, we can derive the original
gradient descent complexity pursuit algorithm.

2.3. Gaussian moments

The approach above could be used for noisy complexity
pursuit as well (i.e., ICs are time signals in the noisy
model), if only we had measures of the Kolmogoroff
complexity which are immune to Gaussian noise, or at
least, whose values for the original data can be easily
estimated from noisy observations. The main point is to
show that for certain choices of G, it is simple to estimate
the values of K̂ from noisy observation.
Denote by

jcðxÞ ¼
1

c
j

x

c

� �
¼

1ffiffiffiffiffiffi
2p
p

c
exp �

x2

2c2

� �
, (9)

the Gaussian density function of variance c2, and by
jðlÞc ðxÞ the lth (l40) derivative of jcðxÞ. Denote further
by jð�lÞ

c ðxÞ the lth integral function of jcðxÞ, obtained by
jð�lÞ

c ðxÞ ¼
R x

0
jð�lþ1Þ

c ðxÞdx, where we define j0
cðxÞ ¼ jcðxÞ.

Then we have the following theorem [7,8]:

Theorem 1. Let v be any non-Gaussian random variable, and

denote by n an independent Gaussian noise variable of
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