
Training spiking neural networks to associate spatio-temporal
input–output spike patterns

Ammar Mohemmed a,n, Stefan Schliebs a, Satoshi Matsuda c, Nikola Kasabov a,b

a Knowledge Engineering and Discovery Research Institute, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
b Institute for Neuroinformatics, ETH and University of Zurich, Switzerland
c Department of Mathematical Information Engineering, Nihon University, Japan

a r t i c l e i n f o

Available online 23 October 2012

Keywords:

Spiking neural networks

Supervised learning

Spatio-temporal control

Temporal coding

a b s t r a c t

In a previous work (Mohemmed et al., Method for training a spiking neuron to associate input–output

spike trains) [1] we have proposed a supervised learning algorithm based on temporal coding to train a

spiking neuron to associate input spatiotemporal spike patterns to desired output spike patterns. The

algorithm is based on the conversion of spike trains into analogue signals and the application of the

Widrow–Hoff learning rule. In this paper we present a mathematical formulation of the proposed

learning rule. Furthermore, we extend the application of the algorithm to train a SNN consisting of

multiple spiking neurons to perform spatiotemporal pattern classification and we show that the

accuracy of classification is improved significantly over a single spiking neuron. We also investigate a

number of possibilities to map the temporal output of the trained spiking neuron into a class label.

Potential applications for motor control in neuro-rehabilitation and neuro-prosthetics are discussed as

a future work.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

The perfection exhibited by living entities in carrying out their
daily natural activities is inspiring researchers to adopt their
behavior, deep to the cell level, as a model to solve computational
tasks that are considered complex for machines to solve. The
study of spiking neural networks (SNN) [2–5] represents a
significant step in the path of learning from the brain. SNN is
closer to the real operational model of the brain than conven-
tional neural networks. This closeness is asserted in the use of
spikes as a form of communication between the neural nodes
similar to the brain. The shape of the spike seems less relevant
and has no importance in representing the information, instead
the time of spiking carries the information. How information is
encoded in the spike timing is a debatable issue as many theories
exist. Traditionally, the commonly used neural code in SNN is rate
coding in which the information is encoded in the number of spikes
over a small time window. Alternatively, the temporal coding
encodes the information in the exact timing of the spikes. Informa-
tion representation has an important role in simplifying and speed-
ing the computation to achieve good results. In [6] it was argued

that the recognition of patterns such as colors, visual patterns, odors
and sound quality are solved rapidly in neurobiology using temporal
coding and could not be solved using rate-based neural models.
Furthermore, temporal coding is supported by evidences observed
in different types of biological neurons, see [7] for a survey.

The other issue establishing the biological plausibility of SNN
is the learning paradigm referred to as spike time dependent
plasticity (STDP) [8,9,2,10]. The STDP is an unsupervised learning
process that adjusts the synaptic weights based on the time
correlation between the incoming spike (presynaptic spike) and
the emitted spike of the neuron (postsynaptic spike). In [11] it
was shown that STDP enables a neuron to perform a complex
recognition task: to localize a repeating spatiotemporal spike
pattern embedded in equally dense distractor spike trains.
In [12], an unsupervised learning algorithm based on STDP and
Winner-Take-All (WTA) paradigm is proposed for pattern recognition.

However, for specific task oriented engineering applications,
supervised learning (training) or a combined unsupervised–
supervised might be more favorable over unsupervised learning.
Supervised learning, commonly in the form of error back propaga-
tion [13], is widely used in training conventional neural networks to
perform pattern recognition. Due to the nature of spike-based
communication and the complexity of SNN (which requires
tuning big number of parameters), no efficient supervised learning
techniques for SNN have existed until recently.

One of the first supervised learning methods for SNN is
SpikeProp [14]. This uses a gradient descent approach that adjusts
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the synaptic weights in order to emit a single spike at a specified
time. The timing of the output spike encodes specific information,
e.g. the class label of the presented input sample. However,
SpikeProp cannot train SNN to emit a desired spike train consisting
of more than one spike.

An interesting learning rule for spatiotemporal pattern recog-
nition has been suggested in [12]. The so-called Tempotron
enables a neuron to learn whether to fire or not to fire in response
to a specific input stimulus. Consequently, the method allows the
processing of binary classification problems. However, the neuron
is not intended to learn a precise target output spike train, but
instead whether to spike or not to spike in response to an input
stimulus.

A Hebbian based supervised learning algorithm called remote
supervised method (ReSuMe) was proposed in [15] and further
studied in [16,17]. ReSuMe, similar to STDP, is based on a learning
window concept. Using a teaching signal a specific desired output
is imposed on the output neuron. With this method, a neuron can
produce a spike train precisely matching a desired spike train.
It was shown that in combination with the liquid state machine
(LSM) [18], the algorithm is efficient for random mapping from
any input spike train to any output spike train or multiple spike
trains. The algorithm was mainly designed and applied for
neuroprostheses control [19].

Recently, a method called Chronotron was proposed [20]. Two
versions of learning rules are described therein; E-learning and
I-learning. E-learning is based on minimizing the error between
the desired spike pattern and the actual one. The error is
measured using the Victor–Purpura spike distance metric [21].
This metric produces discontinuities in the error landscape that
must be overcome through approximation. E-Learning surpasses
ReSuMe in terms of the number of spike patterns that can be
memorized and classified. The other version, I-Learning, is biolo-
gically more plausible but less efficient.

In [22] the authors proposed a supervised learning paradigm
for SNN based on particle swarm optimization (PSO). PSO opti-
mizes, according to a fitness function, the parameters of the
dynamic synapses [23] which connect the layers of the network.
The fitness function measures the similarity between the actual
output spike train and the target spike train. However, PSO
becomes less efficient at finding good solutions when the number
of variables (i.e. the parameters of the synapses) increases, limit-
ing its applicability for large networks, especially when the input
stimulus is a spatiotemporal spike pattern consisting of many
spike trains. To overcome this difficulty, the authors proposed in
[1] a simple method to train a neuron to map (associate) an input
spatiotemporal spike pattern to a desired spike train pattern. The
method is based on the Widrow–Hoff (or Delta) learning rule [24]
commonly used in traditional neural networks. The Delta rule
adjusts the weight of a synapse by scaling the error signal, i.e. the
difference between the teacher signal and the actual signal, by the
value of the input at that synapse. The Delta rule is inapplicable to
SNN because spikes, unlike real-values signals, cannot be sub-
tracted or multiplied directly. In the mentioned proposed learning
rule, spike trains are converted into continuous signals by con-
volution with a kernel function. The Delta rule can then be
applied directly to adjust the synaptic weight for training pur-
poses. We refer to a spiking neuron trained via this method by
SPAN (Spike Pattern Association Neuron) since the neuron is
intended primarily for input/output spike pattern association.
SPAN was evaluated to be efficient in a synthetic spatiotemporal
classification problem [1].

In this paper, a mathematical formulation of SPAN learning
rule is provided. Furthermore, instead of a single SPAN to perform
spatiotemporal classification, we train multiple SPANs in a single
layer network to perform the classification task and compare the

accuracy with that of a single SPAN. Because SPAN is based on
temporal coding, we describe and test different ways to transform
the output spike pattern into a class label.

In the next section the learning rule is described and derived
mathematically. In Section 3 we discuss the multiple SPAN archi-
tecture. In Section 4, the details of the simulation experiments and
results using multiple SPANs are given. Section 5 concludes the
paper and highlights future research and applications.

2. The SPAN learning rule

Similar to other supervised training algorithms, the synaptic
weights of the network are adjusted iteratively to impose a
desired input/output spike pattern association to the SNN.
To derive the learning rule, we begin with Widrow–Hoff rule
as follows. For a synapse i, the weight change Dwi is defined as

Dwi ¼ lxi ðyd�youtÞ ¼ lxiDi ð1Þ

where lAR is a real-valued positive learning rate, xi is the input
transferred through synapse i, and yd and yout refer to the desired
and the actual neural output, respectively. Note that Di ¼ yd�yout

is the difference or error between the desired and the actual
output of the neuron.

This rule was introduced for conventional neural networks
where the input and output are real-valued signals. In SNN
however, trains of spikes are passed between neurons rendering
the Widrow–Hoff rule incompatible for SNN. More specifically,
if xi, yd and yout are considered as spike trains s(t) defined by

sðtÞ ¼
X

f

dðt�tf Þ ð2Þ

where t f is the firing time of a spike and dð�Þ is the Dirac delta
function dðxÞ ¼ 1 if x¼0 and 0 otherwise, then the difference
between two spike trains yd and yout does not define a suitable
error landscape which can be minimized by a gradient descent
method.

Here, we address this issue by proposing the following idea.
In order to define the difference between spike trains, we
convolve each spike sequence with a kernel function kðtÞ. This
is similar to the binless distance metric used to compare spike
trains [25]. We define

~xiðtÞ ¼
X

tf

i
AFin

kðt�tf
i Þ ð3Þ

~ydðtÞ ¼
X

tg

d
AFd

kðt�tg
dÞ ð4Þ

~youtðtÞ ¼
X

th
out A Fout

kðt�th
outÞ ð5Þ

with Fin, Fd and Fout being the input, the desired and the actual
output set of spike trains, respectively. Substituting xi, yd and yout

with the kernelized spike trains ~xiðtÞ, ~ydðtÞ and ~youtðtÞ, a new
learning rule for a spiking neuron is obtained:

DwiðtÞ ¼ l ~xiðtÞ ð ~ydðtÞ� ~youtðtÞÞ ð6Þ

This equation formulates a real-time learning rule such that the
synaptic weights change over time. By integrating Eq. (6), we
derive the batch version of the learning rule which is under
scrutiny in this paper:

Dwi ¼ l
Z 1

0

~xiðtÞ ð ~ydðtÞ� ~youtðtÞÞ dt ð7Þ
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