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a b s t r a c t

Robot position accuracy plays an important role in advanced industrial applications. In this paper, a new
calibration method for enhancing robot position accuracy is proposed. In order to improve robot
accuracy, the method first models and identifies its geometric parameters using an extended Kalman
filtering (EKF) algorithm. Because the non-geometric error sources (such as the link deflection errors,
joint compliance errors, gear backlash, and so on) are either difficult or impossible to model correctly
and completely, an artificial neural network (ANN) will be applied to compensate for these un-modeled
errors. The combination of model-based identification of the robot geometric errors using EKF and a
compensation technique using the ANN could be an effective solution for the correction of all robot error
sources. In order to demonstrate the effectiveness and correctness of the proposed method, simulated
and experimental studies are carried out on serial PUMA and HH800 manipulators, respectively. The
enhanced position accuracy of the robots after calibration confirms the practical effectiveness and
correctness of the method.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Recently, robotic manipulators have been widely used for
applications that require high accuracy, such as off-line program-
ming, robot-based machining, robot-aided surgery, and so on. For
various reasons such as machining tolerance, assembly tolerance,
structural deformation of robots, etc., the physical robot and its
nominal kinematic model are different. This difference signifi-
cantly reduces the robot position accuracy. Therefore, before being
use, the robots should undergo a necessary calibration procedure
to enhance their position accuracy.

Many works have addressed the modeling of the error sources
of robots for calibration [1–12]. These error sources can be
classified into two categories: geometric parameter errors such
as link length and link twist errors and non-geometric errors such
as gear backlash, link and joint compliance, etc. Some studies have
focused on the modeling and identification of the geometric
parameter errors and have ignored the non-geometric errors [1–
3,6–8]. These studies assumed that the effect of the non-geometric
errors on the robot position errors is small. The identified kine-
matic parameters are therefore inaccurate [4,6,9]. Because these
non-geometric errors still affect the robot accuracy, non-geometric

error parameters cannot be ignored. Other researchers [4,10–14]
developed the robot kinematic model including geometric and
joint compliance errors. The joint compliance error is caused by
the robot weight and the carried payload. Judd and Knasinski [4]
examined experimentally many error sources of a physical robot
such as geometric errors, gear errors, servo error, structural
deformation errors, thermal change errors, gear wear errors and
base misalignment. In addition, the authors proposed to use a
homogeneous transformation matrix at the robot end plate to
improve robot accuracy. However, these error sources are specific
to individual physical robots, so the method is not general. Earlier,
Dulen and Schröer [15] applied the elastic beam theory to
investigate the robot link effects as represented by the changes
of six differential elements (three for translation changes and
three for rotation changes). Hudgens et al. [16] used a method for
the identification of general robot compliance characteristics
under applied torques and forces. However these methods had
to resort to the use of special tools to identify the compliance error
elements. Both studies [15,16] did not include sufficient non-
geometric errors for accurate robot calibration.

In the above research [1–12], the least squares algorithm is used
for parameter identification [17]. There are many other studies
using various algorithms for parameter identification such as non-
linear optimization procedure [18,19], iterative linearization [20],
extended Kalman filter [5,20–22]. The effectiveness of the identifi-
cation algorithms was compared in the calibration study for SCARA
robot by Omodei et al. [20]. Omodei et al. concluded that EKF is the
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best among the above algorithms due to the advantages such as fast
convergence, reliability and estimation of identification result
uncertainty [20]. Park and Kim [21] conclude the same remark that
EKF converges faster than Least Squares Estimation [21]. Some
algorithms also used for parameter identification for examples
maximum likelihood [23], Levenberg–Marquardt [11,24] although
their convergence speeds are fairly slow.

Besides, to increase robot accuracy, its kinematic properties are
identified based on robot signature [5,25–27]. Stone et al. developed
an identification method to estimate S model parameters based on
joint features such as rotation plane, rotation center and rotation
radius [25,26]. Afterward, D-H parameters can be extracted from the
parameters of S model. Abderrahim and Whittaker [27] identify
directly D–H parameters by adopting the method of Stone et al.
[25,26] without utilizing the S model. These studies, however, only
found out robot geometric parameters. Another calibration method
applied genetic programming for calibrating manipulators [28]. The
advantage of the method is that it makes a correcting model
automatically by genetic programming (or symbolic regression)
and therefore avoiding the involvement of human in building robot
calibration models. However, this method does not supply knowl-
edge of error sources in robot structure and has slow convergence
speed due to the nature of the method.

In addition to the model-based calibration methods mentioned
above, alternative approaches such as the so-called model-free
calibration have been developed for robot calibration [29–36]. These
approaches are based on an approximation of robot kinematic
relationships, such as the relationship between the robot joint
readings and its position errors or between the robot positions
and its position errors. In order to approximate these relationships,
some researchers have used radial basis function networks (RBFN)
[29], fuzzy logic algorithms [30], and artificial neural networks
(ANN) [31,32]. Some other researchers have utilized polynomials
such as Fourier polynomials, ordinary polynomials, and the poly-
nomials of Jacobi, Laguerre and Hermeite, and Bessel. Other works
[33,34] have used Fourier and ordinary polynomials to predict the
robot position errors at its configurations or end-effector positions.
However, these techniques are limited due to their low accuracy and
complicated polynomials. Among those approximation techniques,
the ANN-based functional approximation is the most effective due to
its ability to generalize high adaptation, flexibility, and learning
ability. In some studies [35,36], a functional relationship between
the robot joint angle and its corresponding joint errors are for-
mulated based on an ANN. However, the ANN training data that are
obtained by the robot's nominal inverse kinematics are inaccurate.
In one study [29], the robot workspace is divided into sub-work-
spaces, the kinematic parameters are identified in these sub-work-
spaces, and finally the functions of each identified parameter are
formulated. Some studies [31,32] have utilized ANNs to represent
the functional relationship of the robot position errors in terms of its
Cartesian positions. So, these robots only canwork accurately for the
task frames used in the calibration process. However, Meggiolaro
et al. [37] and Zhong and Lewis [38] showed that a robot can come
to the same Cartesian position with multiple configurations (multi-
ple joint angle sets), and therefore the position errors at individual
robot configurations are completely different. Therefore, the devel-
oped relationships and training data in [31,32] are not appropriate.
Generally, the methods of approximation for robot kinematics are
limited with regard to understanding the essence of the robot error
sources, even the errors that can be modeled easily, such as the link
geometric parameters.

Model-based calibration has many advantages due to its lower
cost computation, fast convergence, and insights into error sources.
Because not all of the errors (especially the non-geometric errors) can
be modeled correctly and completely, therefore the portion of the
robot position error that is caused by these un-modeled error sources

should be compensated by using an ANN. The combination of both
model-based calibration and ANN-based error compensation meth-
ods can be an effective solution for enhancing robot position accuracy.

In this paper, a new calibration method is proposed to enhance
the robot position accuracy. This method is based on a combination
of model-based calibration and ANN-based error compensation.
First, the robot geometric parameters are modeled and identified
using an EKF, and then the robot non-geometric errors are compen-
sated using the ANN. The EKF algorithm has advantages because it
identifies the robot geometric parameters from the given noisy
measurements and the process noise (due to the un-modeled non-
geometric errors [6,9]). The residual robot positions after model
correction will be compensated using the ANN. Our proposed
method is different from the one in [31]. Instead of compensation
for non-geometric errors based on a specific net of Cartesian
coordinate points in a specific task frame [31] (a cubic net of points),
we approximate the actually appropriate non-linear relationship
between the robot input (robot joint angle position) and the robot
output (residual position errors after robot geometric parameter
compensation by EKF), therefore the robot after calibration (by EKF
and ANN) can operate in any task frames. Moreover, as mentioned
above, the developed relationships and training data for ANN in
[31,32] are not appropriate. Simulated and experimental studies on
the PUMA 560 and Hyundai HH800 serial robots, respectively, are
performed to demonstrate the effectiveness and correctness of the
method. We also accomplish a comparison between the proposed
method and other methods modeling both geometric and non-
geometric parameters [10,12]. The calibration results show the better
robot performance when compared with the other works [10,12].

The rest of the paper is organized as follows: Section 2 develops
a kinematic model of the PUMA serial robot. Section 3 derives a
formulation for the identification of the robot geometric para-
meters. Section 4 applies the EKF algorithm for determining the
robot geometric errors. Section 5 constructs and trains the ANN
and shows its application for robot calibration. Section 6 presents
the simulation study and the results for the PUMA robot. Section
7 performs an experimental calibration and presents the results
for the HH800 robot. Finally, Section 8 presents some conclusions.

2. Kinematic model of the PUMA 560 robot

The kinematic model of a PUMA serial robot (Fig. 1) is devel-
oped based on the material in [40], which used the Denavit–
Hartenberg (D–H) convention [39]. The coordinate frames are
fixed on the links from the robot base to the end-effector as
shown in Fig. 1. The nominal D–H parameters are given in Table 1.
A homogenous transformation of two consecutive link frames,
{i�1} and {i}, is described by the following matrix:
i�1
i T ¼ Rotðxi�1; αi�1ÞTrðxi�1; ai�1ÞTrðzi; diÞRotðzi; θiÞ; ð1Þ
where the parameters of link i�1 include the link twist angle αi�1,
link length ai�1, and link offset di, and the parameter of link i is the

Fig. 1. PUMA 560 robot and its link frames.
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