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a b s t r a c t

In this work, the finite-time control problem for sampled-data systems is investigated. The time-varying
sampling is not required to be periodic, and the only assumption is that the distance between any two
consecutive sampling instants does not exceed a given bound. First, the continuous-time systems with
digital control are modeled as continuous-time systems with delayed control input. Then, a novel
Lyapunov functional is used to solve the finite-time control problem. At last, sufficient conditions for the
existence of state feedback finite-time controller are obtained by solving a set of linear matrix
inequalities (LMIs). Different from many existing finite-time control designs of linear systems, this work
extends the partial results to the sampled-data systems. The effectiveness of the proposed results is
eventually illustrated by a numerical example.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The concept of finite time stability (FTS) dates back to the
sixties in the last century, when this idea was introduced in the
literature [1]. A system is said to be finite time stable if, given a
bound on the initial condition, its state does not exceed a certain
threshold during a specified time interval [2,3]. It is important to
recall that the concepts of Lyapunov asymptotic stability (LAS) and
FTS are independent. Many results on control theory and applica-
tions are based on the concept of LAS. However, in many applica-
tions, LAS is not enough. This is the case, for instance, when the
saturation is present, or when a linear model is used which results
from a linearization of nonlinear one around an equilibrium. In
these situations, the large values of the state are not allowable, and
the FTS could be used. In [2,3], sufficient conditions for FTS and
finite-time stabilization of continuous-time linear time-invariant
systems are provided, by using state feedback and output feedback
respectively. The results are also extended to the discrete-tine case
[4]. For linear time-varying systems, some works dealing with FTS
control problems have been recently published, see for example
[5–7]. Recently, FTS has been further extended to stochastic
systems [8], nonlinear systems [9] and time-delay systems [10].

With the rapid development of high-speed computers, modern
control systems tend to be controlled by digital controllers, i.e.,
only the samples of the control input signals at discrete time
instants will be employed. This is called sampled-data system,
which has been a research subject for about three decades and

numerous results have been reported in the literature, see. e.g.
[11–14]. Recently, with the ever developing techniques for handing
time-delay that frequently occur in various applications (see, e.g.,
[15,16], and the references therein), a popular approach dealing
with sampled-data control problem is to transform the sampling
period into a certain time-delay with finite bound [17]. This is also
referred to as input delay approach. Then, the sampled-data
systems are modeled as continuous-time systems with the
delayed-control input and the techniques dealing with time-
delay systems are used to study this one. In recent years, this
method has been further studied. Using the small gain theorem
[18,19] and impulsive system approach [20], the results in [17] are
improved and less conservative results are obtained. Recently, [21]
further refines those approaches and obtains tighter conditions.
Following the input delay approach, the sampled-data stabiliza-
tion [17], sampled-data H1 control [11] and synchronization
control [12–14] have been extensively investigated.

However, although the sampled-data systems have been well
studied in the recently years, the particular finite-time control of
sampled-data systems was not proved before. The main goal of
this work is to fill this gap, i.e., to extend the partial results of
existing FTS of linear systems to the sampled-data systems. In this
work, the sampling period is time-varying and does not exceed a
given bound. First, the continuous-time systems with sampling
control are modeled as continuous-time systems with delayed
control input. Then, a novel Lyapunov functional is constructed to
solve the finite-time control problem. By using a free-weighting
matrix approach and solving a set of linear matrix inequalities
(LMIs), a finite-time sampled-data controller is then obtained.

This work is organized as follows. In Section 2, the definition
of finite-time stability is recalled. Then the problem formulation
and some preliminaries are formally presented. In Section 3, the
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analysis and synthesis of finite-time control problem for linear
systems with sampling control are provided. A set of sufficient
conditions for the existence of state feedback controllers guaran-
teeing FTS of the closed-loop system is obtained. A numerical
example is proposed to verify the effectiveness of our method in
Section 4 and conclusions are drawn in Section 5.

Notation: The notation is standard. N denotes the set of non-
negative integer. R represents the set of real numbers, Rn denotes
the n-dimensional Euclidean space, while Rn�m refers to the set of
all n�m real matrices. AT represents the transpose of the matrix A,
while A�1 denotes the inverse of A. For real symmetric matrices X
and Y, the notation X4Y (respectively XZY) means that the
matrix X�Y is positive-definite (respectively, positive semidefi-
nite). I is the identity matrix with appropriate dimensions. λmaxðPÞ
and λminðPÞ denote, respectively, the maximal and minimal eigen-
values of matrix P. For a symmetric matrix, n denotes the entries
implied by matrix symmetry.

2. Problem formulation and preliminaries

Consider the following continuous-time linear system:

_xðtÞ ¼ AxðtÞþBuðtÞ ð1Þ
where xARn is the state vector and uARm is the control input. A
and B are constant matrices with appropriate dimensions. The
control signal is assumed to be generated by a zero-order hold
function with a sequence of hold times 0¼ t0ot1o⋯otko⋯

uðtÞ ¼ udðtkÞ; tA ½tk; tkþ1Þ ð2Þ
where udð�Þ is a discrete-time control signal and limk-1tk ¼1.
Assume that the sampling instant tk; kAN satisfies

tkþ1�tk ¼ hkrh; 8kAN ð3Þ
where h40 is a scalar and represents the largest sampling
interval. Consider a state-feedback control law of the form

udðtÞ ¼ KxðtkÞ; tA ½tk; tkþ1Þ ð4Þ
As [21], the digital control law is represented as a delayed control
as follows:

uðtÞ ¼ udðtkÞ ¼ udðt�τðtÞÞ; τðtÞ ¼ t�tk; tA ½tk; tkþ1Þ
Here we have 0rτðtÞoh. Then the closed-loop system of (1) and
(4) is given by

_xðtÞ ¼ AxðtÞþBKxðt�τðtÞÞ; τðtÞ ¼ t�tk; tA ½tk; tkþ1Þ ð5Þ
This work concerns with the boundedness of the state of the

closed-loop system (5) over a finite time interval for a set of given
initial conditions, which is the concept of finite-time stability
stated as follows.

Definition 1 (Finite-time stability, FTS). Given three positive sca-
lars δ1; δ2; T40 and a positive-definite matrix R40, the linear
system (1) with u� 0 is said to be finite-time stability with respect
to (R, δ1, δ2, T) if

xT ð0ÞRxð0Þoδ1 ) xT ðtÞRxðtÞoδ2; 8 tA ½0; T�

Remark 1. The concept of FTS concerns with the behavior of the
system over a fixed finite time interval. The corresponding para-
meters R, δ1, δ2, T can be determined according to the actual
situation. It is worth noting that the two concepts of FTS and
asymptotical stability are independent. That is to say: a asympto-
tically stable system may not be FTS, while a system with FTS may
not be asymptotic stability [2,3].

The aim of this work is to design a state-feedback control law
(4) such that the closed-loop system (5) is FTS with respect to

(R; δ1; δ2; T), which is also referred to as finite-time stabilization
problem.

3. Main results

In this section, sufficient conditions will be established to solve
the finite-time stabilization problem under time-varying sampling
control. The following lemma presents a set of sufficient condi-
tions for the FTS of the closed-loop system (5), which is funda-
mental to obtain the main results of this work.

Lemma 1. Given four positive scalars α; δ1; δ2; T40 and a positive-
definite matrix R40, consider the following Lyapunov functional:

VðxðtÞÞ ¼ ∑
3

i ¼ 1
ViðxðtÞÞ; tA ½tk; tkþ1Þ ð6Þ

where

V1ðxðtÞÞ ¼ xT ðtÞPxðtÞ

V2ðxðtÞÞ ¼ ðtkþ1�tÞ
Z t

tk
eαðt� sÞ _xT ðsÞU _xðsÞ ds

V3ðxðtÞÞ ¼ ðtkþ1�tÞ
xðtÞ
xðtkÞ

" #T
Π

xðtÞ
xðtkÞ

" #

Π ¼
1
2ðXþXT Þ �XþY

n �Y�YT þ1
2ðXþXT Þ

2
4

3
5

with the matrices P40;U40;X;Y determined in the following. If the
following relationships hold:

_V ðxðtÞÞ�αVðxðtÞÞo0; 8 tA ½0; T � ð7Þ

δ1eαT
λmaxðR�1=2PR�1=2Þ
λminðR�1=2PR�1=2Þ

rδ2 ð8Þ

then the closed-loop system (5) is FTS with respect to (R; δ1; δ2; T).

Proof. Dividing both sides of (7) by VðxðtÞÞ, and integrating from
0 to t; tA ½0; T �, we have

ln
VðxðtÞÞ
Vðxð0ÞÞoαt; 8 tA ½0; T � ð9Þ

From (9), it follows that

VðxðtÞÞoeαtV ðxð0ÞÞ; 8 tA ½0; T � ð10Þ
From (6), one has

VðxðtÞÞ4xT ðtÞPxðtÞ
¼ xT ðtÞR1=2R�1=2PR�1=2R1=2xðtÞ
ZλminðR�1=2PR�1=2ÞxT ðtÞRxðtÞ ð11Þ

Moreover, one gets

eαtVðxð0ÞÞ ¼ eαtxT ð0ÞR1=2R�1=2PR�1=2R1=2xð0Þ
reαtλmaxðR�1=2PR�1=2ÞxT ð0ÞRxð0Þ
reαTλmaxðR�1=2PR�1=2Þδ1 ð12Þ

From (10)–(12), one obtains

xT ðtÞRxðtÞr eαtV ðxð0ÞÞ
λminðR�1=2PR�1=2Þ

rδ1eαT
λmaxðR�1=2PR�1=2Þ
λminðR�1=2PR�1=2Þ

ð13Þ

From (8), we have xT ðtÞRxðtÞrδ2 for tA ½0; T �. It follows from
Definition 1 that the closed-loop system is FTS with respect to
ðR; δ1; δ2; TÞ. □
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