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ABSTRACT

Support vector regression with chaotic sequence and simulated annealing algorithm in previous
forecasting research paper has shown its superiority to effectively avoid trapping into a local optimum.
However, the proposed chaotic simulated annealing (CSA) algorithm in previous published literature as
well as the original SA algorithm could not realize the mechanism of temperature decreasing
continuously. In addition, lots of chaotic sequences adopt Logistic mapping function which is distributed
at both ends in the interval [0,1], thus, it could not excellently strengthen the chaotic distribution
characteristics. To continue exploring any possible improvements of the proposed CSA and chaotic
sequence, this paper employs the innovative cloud theory to be hybridized with CSA to overcome the
discrete temperature annealing process, and applies the Cat mapping function to ensure the chaotic
distribution characteristics. Furthermore, seasonal mechanism is also proposed to well arrange with the
cyclic tendency of electric load, caused by economic activities or climate cyclic nature. This investigation
eventually presents a load forecasting model which hybridizes the seasonal support vector regression
model and chaotic cloud simulated annealing algorithm (namely SSVRCCSA) to receive more accurate
forecasting performance. Experimental results indicate that the proposed SSVRCCSA model yields more
accurate forecasting results than other alternatives.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Electric systems play the infrastructural backbone role for
modern economic development. Their expected performance is
ensured to reach equilibrium between the supply and the demand
for optimal electric energy allocation. The balancing cost should be
seriously considered by electric suppliers due to low margin profit.
Bunn and Farmer [1] indicate that an increase in the load
forecasting error by 1% will lead to 10 million Pound (£, GBP)
higher operation costs. Hobbs et al. [2] also estimate that a
decrease in the load forecasting error by 1% will lead to save
almost 1.6 million USD per year. Thus, accurate electric load
forecasting is essential for any electric systems to prevent over-
estimation or underestimation, particularly for those developing
countries with limited capability in electricity import and export
[3]. Load forecasting is a complex task for collecting necessary
historical data, pre-processing useful data, and building feasible
models. The load data itself may illustrate nonlinear characteristics
which are caused by historical or exogenous factors [4,5], such as
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weather conditions, electric price, social activities, etc. There are
various techniques based on several statistical methods to forecast
future electric load, including Box-Jenkins models [6], exponential
smoothing models [7], Bayesian estimation model [8], state space
and Kalman filtering technologies [9], and regression models [10].
These approaches are difficultly to receive satisfied performance
in nonlinear electric load forecasting. Since 1980s, due to super
nonlinear mapping capability, artificial neural network (ANN) has
begun its successful applications in load forecasting and has
received significant improvements [11,12]. Recently, several novel
intelligent approaches are hybridized with ANN, such as fuzzy
theory, for example, adaptive network based fuzzy inference
system (ANFIS) with RBF Neural Network [13], hybrid evolutio-
nary algorithms, for example, fuzzy neural network with chaotic
genetic algorithm and simulated annealing algorithm [14], wavelet
transformation, for example, wavelet fuzzy neural network (WFNN)
[15], and so on. The principal drawback of the ANN model is
subjective determination of model structures [16]. An insight
review of the developments of load forecasting by ANN is shown
in the references [17,18].

Support vector regression (SVR) [19] has been successfully
employed in many forecasting applications, such as financial
forecasting [20], traffic flow forecasting [21], atmospheric science
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forecasting [22], and electric load forecasting [23-25]. Based on
previous studies, to obtain better forecasting performance, all
three hyper-parameters of a SVR model have to be determined
carefully. Usually these hyper-parameters are determined by data
re-sampling techniques, these techniques are almost intuitive and
computational time consuming. The author has proposed several
trials in hybridization of chaotic sequence with evolutionary
algorithms for hyper-parameters determination to improve fore-
casting accuracy level. The low forecasting accuracy is almost
caused by the theoretical limitations from original evolutionary
algorithms (i.e.,, premature convergence and trapped in local
optimum) [21,23-25]. In author’s previous studies, the chaotic
sequence is used to transform these hyper-parameters to the
chaotic space to richen the searching ergodically over the whole
space. However, lots of chaotic sequences adopt Logistic mapping
function which is distributed at both ends in the interval [0,1], it
could not excellently strengthen the chaotic distribution charac-
teristics. By comparing with the analysis on chaotic distribution
characteristics after mapping hyper-parameters into chaotic space,
the Cat mapping function is with good ergodic uniformity in the
interval [0,1] and is not easily to fall into minor cycle [26]. This
paper decides to apply the Cat mapping function to map hyper-
parameters into the chaotic space. On the other hand, the chaotic
sequence is also only employed to transform the three hyper-
parameters of a SVR model from the solution space to the chaotic
space, any variable in this kind of chaotic space can travel
ergodically over the whole space of interest to find out the
improved solution eventually. In addition, several disadvantages
embedded in these evolutionary algorithms are required to be
improved to get more accurate forecasting performance of a SVR
model. For example, based on the operation procedure of SA,
shrewd and careful treatments in the annealing schedule are
required, such as the degree of the temperature decreasing steps
during annealing. Particularly, the temperature of each state is
discrete and unchangeable, which does not meet the requirement
of continuous decreasing in actual physical annealing processes.
Furthermore, SA is easily to accept degenerated solution with high
temperature, and it is hardly to escape from local minimum trap
with low temperature [27].

Cloud theory is a model of the uncertainty transformation between
quantitative representation and qualitative concept using language
value [28]. It is successfully used in intelligence control [29,30], data
mining [31], spatial analysis [32], intelligent algorithm improvement
[33], and so on. In case of SA algorithm, its basic operation procedure
requires shrewd and careful treatment during annealing schedule,
such as the temperature decreasing degree. Especially, many applica-
tions disregard the fact that the temperature should be decreased
continuously and cannot be fixed for each state in actual physical
annealing processes. Moreover, based on the theoretical definition of
the SA algorithm, in the high temperature stage, it is easily to accept
worsened solution, then, lead to converge to local minimum while
decreasing to low temperature [27]. Based on the mechanism of the
SA algorithm, along with the temperature decreasing, the annealing
process, likes a fuzzy system, will let these hyper-parameters move
from large scale to small scale randomly as the temperature decreas-
ing. Cloud theory can successfully realize the transformation between
a qualitative concept in words and numerical representation [28].
Therefore, it is suitable to be employed to solve the problem of
temperature decreasing discretely. This investigation tries to apply the
chaotic sequence (mapping by the Cat mapping function) with cloud
theory hybridized into the original SA algorithm (namely CCSA) to
determine the values of these hyper-parameters in a SVR model to
escape from stagnation.

In the meanwhile, as shown in the existed literatures [34-36] that
electric loads also demonstrate a seasonal tendency caused by the
difference in demand from month to month and season to season. The

applications of SVR models have not been widely explored to deal
with seasonal trend time series, however. Therefore, this paper also
attempts to apply the seasonal mechanism [36,37] to deal with sea-
sonal tendency time series problem.

The proposed seasonal SVR with CCSA algorithm, namely
SSVRCCSA model, will compare the forecasting performances with
two other existed forecasting approaches, ARIMA and TF-e-SVR-SA
models proposed by Wang et al. [36]. The structure of the paper is
organized as follows. Section 2 proposes how to model the
proposed SSVRCCSA model. The basic formulation of SVR, the Cat
mapping, the CSA algorithm, and the seasonal mechanism will all
be illustrated. Section 3 provides a numerical example and com-
pares the forecasting performances among all alternatives. Finally,
the conclusions are shown in Section 4.

2. Methodology of SSVRCCSA model
2.1. Support vector regression (SVR) model

The brief ideas of a SVR model are introduced as followings. A
nonlinear mapping ¢(-): R"—>R™ is defined to map the input
data (training data set) {(x;, yi)},{vzl into a so-called high dimen-
sional feature space (which may have infinite dimensions), R™.
Then, in the feature space, there theoretically exists a linear
function, f, to formulate the nonlinear relationship between input
data and output data. Such a linear function, is called as the SVR
function and is shown as Eq. (1),

fx)=wTpx)+b (1)

where f(x) denotes the forecasting values; the coefficients w
(weR™) and b (b e R) can be adjusted. The SVR method aims to
minimize the empirical risk as Eq. (2),
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where 6.(y;, W p(X;)+b) is the e-insensitive loss function and
defined as Eq. (3),

(Wipx)+b—y;|—e, if |WiopX)+b—y;|>e
0, otherwise

O.(yi, W p(x;)+b) = {

3

In addition, 6.(y;,wp(x;)+b) is employed to find out an
optimum hyper-plane on the feature space to maximize the
distance separating the training data into two subsets. Thus, the
SVR model focuses on finding the optimum hyper-plane and on
minimizing the training error between the training data and the
e-insensitive loss function, i.e., the SVR model minimizes the
overall errors, as shown in Eq. (4),

N
Min R.w. &) = Jw'w +C 3 (& +£) )
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with the constraints

yi—-wWlpx)—-b<e+&, i=1,2,..,N
—yi+Wlpx)+b<e+&, i=1,2,...N
>0, i=1,2,...N
£>0, i=1,2,...N

The first term of Eq. (4) is used to regularize weight sizes, to
penalize large weights, and to maintain regression function flat-
ness. The second term penalizes training errors of f{x) and y by
using the e-insensitive loss function. The parameter C is used to
trade off these two terms. Training errors above ¢ are denoted as

*, on the contrary, the training errors below —e are denoted as &;.
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