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This paper is concerned with further relaxations for control synthesis of the Roesser type discrete-time
2-D T-S fuzzy systems. A novel multi-instant fuzzy state-feedback control scheme and a new multi-
instant Lyapunov function, which are homogeneous polynomially parameter-dependent on both the
current-time normalized fuzzy weighting functions and the past-time normalized fuzzy weighting
functions along two independent directions, are developed to stabilize the underlying 2-D T-S fuzzy
system with less conservatism. Because more useful information about both current-time and past-time
normalized fuzzy weighting functions is involved into control synthesis, the relaxation quality of control
synthesis could be improved significantly. Finally, a numerical example is provided to illustrate the
effectiveness of the proposed results.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Over the past two decades, the two-dimensional (2-D) models
[1,2] have attracted considerable attention due to their extensive
applications of practical systems, such as those in image data
processing and transmission, thermal process and signal filtering.
Recently, the 2-D modeling theory is also frequently applied as an
analysis tool to some control problems, e.g., iterative learning
control [3], repetitive process control [4] and PI control of discrete
linear repetitive processes [5], etc. In [6], the problem of stability
and [;-gain analysis for positive 2D T-S fuzzy state-delayed
systems in the second FM model has also been investigated. Due
to its application in modeling hybrid systems, H,, filtering for 2-D
Markovian jump systems has also been investigated in [7]. More-
over, the problem of stability analysis of 2-D discrete systems
described by the FM second model with state saturation is
investigated in [8]. However, it is worth noting that the aforemen-
tioned results are only for linear 2-D systems. As is well known,
most of the actual 2-D systems belong to nonlinear systems and
the above results fail to work in dealing with the problem of
control synthesis of nonlinear 2-D systems [9].
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On the other hand, the well-known Takagi-Sugeno (T-S) fuzzy
model [10] has attracted much attention from scientists of control
science, essentially because it can effectively approximate a wide
class of general nonlinear systems. By exploiting both the single
Lyapunov function and the so-called parallel distributed compen-
sation (PDC) control law [11], quadratic stabilization conditions for
T-S fuzzy control systems have been addressed in the past two
decades and many extensive results have been given in terms of
LMIs, e.g., [12,13]. However, those existing quadratic stabilization
conditions are very conservative and thus numerous slack variable
methods have been proposed for further releasing its conservatism
[14-25]. As far as the problem of control synthesis of discrete-time
T-S fuzzy systems is concerned, the usage of both the non-
quadratic Lyapunov function and the non-PDC control law has
been fully investigated and several kinds of relaxed non-quadratic
stabilization conditions have been proposed in the existing litera-
ture. It is worth noting that all the above fuzzy control laws are
only dependent on the current-time normalized fuzzy weighting
functions, for example, the PDC control law [11] is linearly
dependent on the current-time normalized fuzzy weighting func-
tions and the non-PDC case [14] is quadratically dependent on the
current-time normalized fuzzy weighting functions. Indeed, the
usual fuzzy Lyapuonv functions are also linearly dependent on the
current-time normalized fuzzy weighting functions. One will
naturally raise a question: whether the conservatism could be
further reduced if we adopt different design structures of either
control laws or fuzzy Lyapuonv functions? Therefore, researches in
this area should be very important and useful for researchers and
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designers in this field, which motivates us to carry out positive
answers to this question.

Recently, based on the T-S fuzzy modeling method, the pro-
blem of control synthesis of nonlinear Roesser type 2-D systems
has been investigated by applying some new fuzzy relaxed tech-
niques in [9], i.e., the authors in [9] have extended both the non-
quadratic control scheme and the so-called right-hand-side slack
variables approach [13] into stabilization of Roesser type 2-D T-S
fuzzy systems with less conservatism. More recently, with the
purpose of further reducing the conservatism, some improved
homogeneous polynomial techniques have been developed in
dealing with the problem of relaxed stabilization of Roesser type
discrete-time 2-D T-S fuzzy systems [26]. In the above relaxed
result [26], both the control scheme and the non-quadratic
Lyapunov function are homogeneous polynomially parameter-
dependent on current-time normalized fuzzy weighting functions
and the usage of them plays an important role in reducing the
conservatism. Now, it seems that the challenge is how to signifi-
cantly improve the quality of the relaxations. For instance, in terms
of efficiency, i.e. the ability to obtain less conservative results via
designing an efficient approach, or the easiness to extend a given
stabilization condition to deal with other similar problems. As
stated in [26], there is still some conservatism to be lifted if we
change ‘something’ in the process of control synthesis, such as the
form of control law or Lyapunov function, or further exploiting the
algebraic property of normalized fuzzy weighting functions, which
motivates us to carry out the present work.

In this paper, the problem of relaxed stabilization for Roesser type
discrete-time 2-D T-S fuzzy systems will be investigated. To do this, a
new multi-instant fuzzy control scheme and a new class of fuzzy
Lyapunov function are proposed, which are homogenous polynomially
parameter-dependent on both the current-time normalized fuzzy
weighting functions and the past-time normalized fuzzy weighting
functions. Compared with the existing results in [9,26], more additional
decision variables are introduced and consequently more flexibility is
generated for further releasing the underlying conservatism. Further-
more, for any given value of the degree of the underlying homogenous
polynomials matrix, convergent stabilization conditions are developed
by exploiting the algebraic property of multi-instant normalized fuzzy
weighting functions, i.e., attaining asymptotically necessary and suffi-
cient stabilization conditions in the convergent sense. Indeed, it is
worth noting that the underlying 2-D system's information is propa-
gated along two independent directions and this fact makes the
problem of stabilization more complicated than the usual T-S system.
In the proof of our main result, several pairs of multi-instant normal-
ized fuzzy weighting functions (along horizonal and vertical directions,
respectively) are produced. As a result, the Polya's Theorem should be
applied along two independent directions and across different instants,
and thus those related coefficients of the homogeneous polynomially
parameter-dependent matrices should be elaborately arranged.

The rest of this paper is organized as follows: in Section 1, problem
formulation and preliminaries are given in details. In Section 2, less
conservative stabilization conditions are developed via a novel multi-
instant fuzzy state-feedback control scheme. In Section 3, an numerical
example is given to demonstrate the effectiveness of the result
proposed in this paper. Finally, some conclusions are given in Section 4.

For simplicity, the notations used are fair standard. For example,
X >0 (or X>0) means the matrix X is symmetric and positive
definite(or symmetric and positive semidefinite). For a square matrix
E, He(E) is defined as E+E'. X" denotes the transpose of X. The
symbol I represents the identity matrix with appropriate dimension.
A star = in a symmetric matrix denotes the transposed element in the
symmetric position. For a matrix P, min(P) (respectively, max(P))
means the smallest (respectively, largest) eigenvalue of P. Z* denotes
the set of negative integers {0, 1,2, ...} and M! represents factorial, i.e.
M! =MM —1)(M—2)---2)(1) for Me Zz* with 0!=1.

2. Problem formulation and preliminaries
2.1. Roesser type discrete-time 2-D T-S fuzzy model [9]

Consider a class of Roesser type discrete-time nonlinear 2-D
system described as follows [9]:

xt(s, )= Z(x(s, 1) +S&(s, Dyugs, 1) (1)
X0, =f(),x(s,0)=g(5) )
with

b xN(s, 1) rs D x(s+1,0)
X(s, )= X', |’ x(s.h= X'+ |’

where x/(-) is the horizonal state in R™, x'(-) is the vertical state in
R™, u() is the control input in R™. Z(-) and S(-) are general
nonlinear functions satisfying Z,SeC!. s, | are two integers in
7*. f{l) and g(s) are corresponding boundary conditions along two
independent directions.

By extending the usual 1-D T-S fuzzy modeling approach into
the 2-D model, a Roesser type discrete-time 2-D T-S fuzzy model
described by the following rules could be proposed to represent
the Roesser type discrete-time nonlinear 2-D system (1) [9]:

If zy(s,l) is Mj;, and..., and z(s,l) is M, then,
X (s,)=Aix(s,h+Bu(s, l),i=1,....r
x"(0,1) =f(1),¥'(5,0) = g(s) 3)
with
Al AP B}

Ai: Ai21 A[zz B Bi: Biz 5
where zp(s,1), for p=1,...,L are the premise variables, M;, is the
fuzzy set, r is the number of IF-THEN rules. A" e R"*™ Al? e
R™M M2 AiZl c R*M Ai22 c R <M Bi1 c RMxm BiZEanxm_

By using product of inference, singleton fuzzifier, and center-

average defuzzifer, the overall Roesser type discrete-time 2-D T-S
fuzzy systems can be expressed as follows:

XD = 3 hizs. DA D+ B, D),
i=1

x'(0.1) =f(1).¥(5.0) = g(s). )
where
hi(z(s, 1)) = wi(z(s, D)

,r: 1/4,‘(2(5, hy

pi(@(s, 1) = Ty, _ 1 Mij(Z(s, 1)

Denote X, = sup{llx(s,]) Il : r=s+1}, and next we give the defini-
tion of asymptotical stability of the above system (4).

Definition 1 (Xie and Zhang [9]). The Roesser type discrete-time
2-D T-S fuzzy systems (4) is asymptotically stable if lim; . ..X; =0
with the initial and boundary conditions (2).

In this paper, for a matrix X;, the following notations will be
adopted for simplicity:

hi = hi(z(s, D)), h=(hi(z(s,D), ..., he(z(s, D)),

Xo= 3 hXi hs—1.0)=(hEs—1,D), ... hizs—1,D),

i=1

-1
Xz’l = <§r: h,~X,~) . h(z(s,1-1)) = (hy(z(s,1-1)), ..., he(z(s,1-1))).
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