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a b s t r a c t

This work is concerned with the delay-dependentstability problem for recurrent neural networks with
time-varying delays. A new improved delay-dependent stability criterion expressed in terms of linear
matrix inequalities is derived by constructing a dedicated Lyapunov–Krasovskii functional via utilizing
Wirtinger inequality and convex combination approach. Moreover, a further improved delay-dependent
stability criterion is established by means of a new partitioning method for bounding conditions on the
activation function and certain new activation function conditions presented. Finally, the application of
these novel results to an illustrative example from the literature has been investigated and their
effectiveness is shown via comparison with the existing recent ones.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

During the past several decades, an increasing, revived research
activity on recurrent neural networks (RNNs) is taking place
because of their successful applications in various areas. These
include associative memories, image processing, optimization pro-
blems, and pattern recognition as well as other engineering or
scientific areas [1–5]. It is well known, the time delay often is a
source of the degradation of performance and/or the instability of
RNNs. It is therefore that the stability analysis of RNNs with time
delays has attracted considerable attention in recent years, e.g. see
Refs. [6–11] and references therein.

It should be noted, the existing stability criteria for RNNs with
time delays can be classified into the delay-independent ones and
the delay-dependent criteria. In general, when the time delay is
small, the delay-dependent stability criteria are less conservative
than delay-independent ones. For the delay-dependent stability
criteria, the maximum delay bound is a very important index for
checking the criterion's conservatism. In due course, significant
research efforts have been devoted to the reduction of conserva-
tism of the delay-dependent stability criteria for the time-delay

RNNs. Following the Lyapunov stability theory, there are two
effective ways to reduce the conservatism within in stability
analysis of networks and systems. One is the choice of suitable
Lyapunov–Krasovskii functional (LKF) and the other one is the
estimation of its time derivative.

In recent years, some new techniques of construction of a
suitable LKF and estimation of its derivative for delayed neural
networks (DNNS) and time delay systems have been presented [12–
32,44–48]. Methods for constructing a dedicated LKF include delay-
partitioning idea [12–20], triple integral terms [16–25], more
information on the activation functions [26], augmented vector
[27,28], etc. The proposed methods for estimating the time-
derivative of LKF include: Park' inequality [29], Jensen's inequality
[30], free-weighing matrices [31], and reciprocally convex optimiza-
tion [32]. In turn, these methods proved very useful in investigating
the stability problems of RNNs with time delays. Among the
stability analysis methods, some delay-dependent criteria for the
RNNs with time-varying delays have been contributed in works
[33–36,42]. For instance, in Ref. [33] the problem of delay-
dependent stability has been investigated by considering some
semi-positive-definite free matrices. Jensen's inequality combined
with convex combination method has been used in Ref. [35]. In Ref.
[36] a new improved delay-dependent stability criterion was pro-
posed, which has been derived by constructing a new augmented
LKF, containing a triple integral term, also by using Wirtinger-based
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integral inequality and two zero value free matrix equations. How-
ever, the introduced free-weighing matrices increase the calculation
complexity as well as computational complexity. For the RNNs with
interval time-varying delays, work [43] has contributed an improved
stability criterion by construction of a suitable augmented LKF and
utilization of Wirtinger-based integral inequality with reciprocally
convex approach. Following the work [37], both the ability and the
performance of neural networks are influenced considerably by the
choice of the activation functions. Apparently there is an essential
need to look for alternative methods of reducing the conservatism of
stability criteria for such neural networks. Thus, the delay-
partitioning approach appeared as an effective way to get a tighter
bound by calculating the derivative of the LKF, which would lead to
better results. However, as the partitioning number of delay
increases, the matrix formulation becomes more complex and the
dimensionality of the stability criterion grows bigger. Hence the
computational burden and computational time consumption growth
become a considerable problem. The activation function dividing
approach was proposed inwork [23], and some new improved delay-
dependent criteria for neural networks with time-varying delays
have been established. A more general activation function dividing
method for delay-dependent stability analysis of DNNs was pre-
sented in Ref. [38].

The above motivating discussion has given considerably incen-
tives to utilize a modified approach, albeit making use of the
existing knowledge, in order to arrive at less conservative, novel,
delay-dependent stability criteria for recurrent neural networks
with time-varying delays.

Firstly, a combined convex method is developed for the stability
of the recurrent neural network systems with time-varying delays.
This method can tackle both the presence of time-varying delays and
the variation of delays. As a first novelty, a new LKF is constructed by
taking more information on the state and the activation functions as
augmented vectors. It has been found by using reciprocal convex
approach and Wirtinger inequality to handle the integral term of
quadratic quantities. With the new LKF at hand, in Theorem 1, the
delay-dependent stability criterion in which both the upper and
lower bounds of delay derivative are available is then derived.
Secondly, unlike the delay partitioning method, a new dividing
approach of the bounding conditions on activation function is
utilized in Theorem 2. Considering the time and the improvement
of the feasible region, the bounding of activation functions
k�
i r ðf iðuÞ=uÞrkþ

i of RNNs with time-varying delays is divided into
two subintervals such as to obtain: k�

i r ðf iðuÞ=uÞrk�
i þαðkþ

i �k�
i Þ

and k�
i þαðkþ

i �k�
i Þr ðf iðuÞ=uÞrkþ

i (0rαr1), where the two
sub-intervals can be either equal or unequal. New activation function
conditions for the divided activation functions bounds are proposed
and utilized in Theorem 2. Thirdly, by utilizing the results of
Theorems 1 and 2, when only the upper bound of the derivative of
the time-varying delay is available, the corresponding new results are
proposed in Corollaries 1 and 2. Finally, this stability analysis method
was applied to a known example from the literature and the
respective results computed. These new results were compared with
the existing recent ones in order to verify and illustrate the effec-
tiveness of the new method and to demonstrate the improvements
obtained. Further, Section 2 presents the problem formulation and
Section 3 presents the new main results. Section 4 elaborates on the
illustrative example and comparison analysis, while conclusions are
drawn and further research outlined in Section 5.

This paper uses the following notations: CT represents the
transposition of matrix C. ℝn denotes n-dimensional Euclidean
space and ℝn�m is the set of all n�m real matrices. P40 means
that P is positive definite. Symbol n represents the elements
below the main diagonal of a symmetric block matrix, and
diag ⋯f g denotes a block diagonal matrix. SymðXÞ is defined as
SymðXÞ ¼ XþXT .

2. Problem formulation

Consider the following recurrent neural networks with discrete
time-varying delays:

_zðtÞ ¼ �AzðtÞþ f ðWzðt�hðtÞÞþ JÞ ð1Þ
where zðUÞ ¼ ½z1ðU Þ; :::; znðU Þ�T is the state vector; f ðUÞ ¼ ½f 1ðUÞ
; :::; f nðU Þ�T denote the neuron activation functions; J ¼ ½J1; :::; Jn�T Aℝn

is a vector representing the bias; A¼ diag fa1; :::; angAℝn�n is a constant
matrix of appropriate dimensions; W ¼ ½W1; :::;Wn�T Aℝn represents
thematrix of connectionweights; and hðtÞ is a time-varying delay having
the following bound properties

C1 : 0rhðtÞrh; hlDr _hðtÞrhuDo1;

C2 : 0rhðtÞrh; _hðtÞrhuD:

where h40 and hl
D; h

u
D are known constants.

The activation functions f iðUÞ; i¼ 1; :::;n are assumed to be
bounded and to satisfy the following bound conditions:

k�
i r f iðuÞ� f iðvÞ

u�v
rkþ

i ; uav; i¼ 1; :::;n ð2Þ

where k�
i and kþ

i are constants.
In the stability analysis of recurrent neural networks (1), for

simplicity, firstly we shift the equilibrium point zn to the origin by
letting x¼ z�zn. Then the system (1) can be converted into

_xðtÞ ¼ �AxðtÞþgðWxðt�hðtÞÞÞ ð3Þ
where gðUÞ ¼ ½g1ðU Þ; :::; gnðUÞ�T and gðWxðU ÞÞ ¼ f ðWxðUÞþznþ JÞ
� f ðWznþ JÞ with gið0Þ ¼ 0. Notice that functions giðU Þ ði¼ 1; :::;nÞ
satisfy the following bound conditions:

k�
i rgiðuÞ�giðvÞ

u�v
rkþ

i ; uav; i¼ 1; :::;n: ð4Þ

If v¼ 0 in (4), then these inequalities become

k�
i rgiðuÞ

u
rkþ

i ; 8ua0; i¼ 1; :::;n: ð5Þ

The objective of this paper is to explore of asymptotic stability
of recurrent neural networks (3) with time-varying delays and to
establish a novel analysis method. Before deriving the main results
of this contribution, the following lemmas are needed:

Lemma 1. [32,39]Consider the given positive integers n, m, a positive
scalar α in the interval ð0;1Þ, a given n�n matrix R40, two matrices
W1 and W2 in ℝn�m. For all vectors ξ in ℝm, define the function Θðα;RÞ
as

Θðα;RÞ ¼ 1
α
ξTWT

1RW1ξþ
1

1�α
ξTWT

2RW2ξ:

Then, if there exists a matrix X in ℝn�n such that
R X

n R

� �
40, the

following inequality holds true:

min
αA ð0;1Þ

Θðα;RÞZ
W1ξ

W2ξ

" #T
R X
n R

� � W1ξ

W2ξ

" #
:

Lemma 2. [39] For a given matrix R40, the following inequality
holds for all continuously differentiable functions σ in ½a; b�-ℝn:Z b

a
_σT ðuÞR _σðuÞduZ 1

b�a
ðσðbÞ�σðaÞÞTRðσðbÞ�σðaÞÞþ 3

b�a
δTRδ;

where δ¼ σðbÞþσðaÞ�ð2=b�aÞ R ba σðuÞdu.

Lemma 3. [40] Let ξAℝn, Φ¼ΦT Aℝn�n, and BAℝm�n such that
rank ðBÞon. Then, the following statements are equivalent:

(1) ξTΦξo0, Bξ¼ 0, ξa0,
(2) ðB? ÞTΦB? o0, where B? is a right orthogonal complement of B.
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