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a b s t r a c t

In this paper, global exponential stability of inertial Cohen–Grossberg neural networks with time delays
is investigated. By using Homeomorphism theorem and inequality technique, a LMI-based global
exponential stability condition and inequality form global exponential stability condition are obtained
for the above neural networks. In our result, the assumptions for the differentiability and monotonicity
on the behaved functions in Ke and Miao (2013) [23] are removed. Thus our results are less conservative
than those obtained in Ke and Miao (2013) [23]. Hence, we obtain new global exponential stability for
this neural network.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In recent decades, much attention has been devoted to the
studies of artificial neural networks because of the fact that neural
networks can be applied to signal processing, image processing,
pattern recognition, control and optimization problems. In parti-
cular, the Cohen–Grossberg neural network proposed in 1983 [1]
has been a focal research subject. In the past years, the global
stability problem for a class of Cohen–Grossberg neural networks
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has received much research attention, and many interesting and
good results have been obtained, see [2–11,25,26–29].

On the other hand, some researchers investigated inertial
neural networks and obtained some results. For example, Liu
et al. [12,13] found chaotic behavior of the inertial two-neuron
system with time through numerical simulation, and gave that the
system will lose its stability when the time delay is increased and

will rise a quasi-periodic motion and chaos under the interaction
of the periodic excitation. Wheeler and Schieve [14] studied an
inertial continuous-time, Hopfield effective-neuron system which
is shown to exhibit chaos, this system is of the following form:

x1″¼ �a11x01�a12x1þa13tanhðx1Þþa14tanhðx2Þ;

x2″¼ �b11x02�b12x2þb13tanhðx1Þþb14tanhðx2Þ;
Babcocka and Westervelt [15] investigated the electronic neural
networks with added inertial and found that when the neuron
couplings are of an inertial nature, the dynamics can be complex,
in contrast to the simpler behavior displayed when they are of the
standard resistor–capacitor variety. Juhong and Jing [16] consid-
ered an inertial four-neuron delayed bidirectional associative
memory model. Weak resonant double Hopf bifurcations are
completely analyzed in the parameter space of the coupling
weight and the coupling delay by the perturbation-incremental
scheme. In [17], authors studied a kinematical description of
traveling waves in the oscillations in the networks which is
extended to networks with inertia. Liu et al. [18,19] investigated
the Hopf bifurcation and dynamics of an inertial two-neuron
system or in a single inertial neuron mode. Zhao et al. [20] studied
the stability and the bifurcation of a class of inertial neural
networks. The authors Ke and Miao [21,22] investigated stability
of equilibrium point and periodic solutions in inertial BAM neural
networks with time delays and unbounded delays under the
assumptions that the activation functions satisfy global Lipschitz
condition and boundedness condition, respectively.
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In [23], the authors studied the following inertial Cohen–
Grossberg neural networks with time delays:
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for i¼ 1;2;…;n, where the second derivative is called an inertial
term of system (1.2), βi40 are constants, xiðtÞ denotes the states
variable of the ith neuron at the time t; αið�Þ denotes an amplifica-
tion function; hið�Þ is the behaved function, aij and bij are the
connection weights of the neural networks; f j denotes the activa-
tion function of jth neuron at time t; τij is the time delay of jth
neuron at time t and satisfies 0rτijrτ; Ii denotes the external
inputs on the ith neuron at time t.
The initial values of system (1.2) are

xiðsÞ ¼ ϕiðsÞ;
dxiðsÞ
ds

¼ ψ iðsÞ; �τrsr0; ð1:3Þ

where ϕiðsÞ and ψ iðsÞ are the bounded and continuous functions,
respectively.

From the viewpoints of mathematics and physics, the system
(1.2) is a class of nonlinear second-order dynamical system where
αi40 is a damping coefficient, then the system (1.2) can be
considered as a model overdamped. However, in some practical
problems, we need to consider the existence and stability of the
system when it has damping. For example, pendulum equation
with dissipation term

d2xðtÞ
dt2

¼ �α
dxðtÞ
dt

�βx�γ sin t;

and forced Duffing equation

d2xðtÞ
dt2

¼ �α
dxðtÞ
dt

�xðβxþγx2Þþδ cos vt;

which have applied background.
In [23], the global exponential stability of inertial Cohen–

Grossberg neural networks with time delays is investigated. By
using Homeomorphism theory and inequality technique, some
sufficient conditions in inequality form which can ensure the
global exponential stability of the system are obtained under the
assumptions that the behaved functions satisfy differentiability
condition and monotonicity condition, and the activation func-
tions satisfy global Lipschitz condition.

So in this paper, our purpose is to establish a LMI-based
condition and an inequality form condition on global exponential
stability for system (1.2) under the assumptions that the behaved
functions do not satisfy the differentiability condition and mono-
tonicity condition, while only satisfies global Lipschitz condition
and the activation functions do not satisfy boundedness condition,
while only satisfy global Lipschitz condition. Thus our global
exponential result will be less conservative than those obtained
in [23]. Since the assumption on the behaved functions in our
paper is different from that in [23], then more effective technique
will be introduced to solve the stability problem of system (1.2).

The paper is organized as follows. In the next section, we
introduce some preliminaries. In Section 3, the LMI-based suffi-
cient condition is derived for the global exponential stability of
inertial Cohen–Grossberg neural networks with time delays by
constructing a suitable Lyapunov function and using some
inequality techniques.

2. Preliminaries

For arbitrary matrix A; AT stands for the transpose of A; A�1

denotes the inverse of A. If A is a symmetric matrix, A40 ðAZ0Þ
means that A is positive definite (positive semidefinite). Similarly,
Ao0 ðAr0Þ means that A is negative definite (negative semidefinite),
λmðAÞ; λMðAÞ denotes the minimum and maximum eigenvalue of a
square matrix A respectively. For any A¼ ðaijÞm�mARm�m, we define

JAJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λMðATAÞ

q
: Let Rm be anm-dimensional Euclidean space, which

is endowed with a norm J � J and inner product ð�; �Þ, respectively.
Given column vector x¼ ðx1; x2;…; xmÞT ARm, the norm is the Eucli-
dean vector norm, i.e., JxJ ¼ ð∑m

i ¼ 1x
2
i Þ1=2. j � j denotes the Euclidean

norm in R. jxj ¼ ðjx1j; jx2j;…; jxmjÞ. We cite the following notations:

r1 ¼ max
1r irn

∑
n

j ¼ 1
a2ij ; r2 ¼ max

1r irn
∑
n

j ¼ 1
b2ij ;

r3 ¼ max
1r irn

fp21i; p22ið1�βiÞ2þαi
2g:

Throughout this paper, we make the following assumptions:

(H1) For each i¼ 1;2;…;n, functions αiðxÞ are continuous and
bounded, satisfy 0oαi rαiðxÞrαi , for all xAR.

(H2) For each i¼ 1;2;…;n, there exist positive constants hi such
that for 8x; yAR,

jhiðxÞ�hiðyÞjrhijx�yj:

(H3) The activation functions f j satisfy the Lipschitz condition, i.e., there
exists constant lj40 such that for j¼ 1;2;…;n,

jf jðxÞ� f jðyÞjr ljjx�yj; x; yAR:

Let variable transformation: yiðtÞ ¼ dxiðtÞ=dtþxiðtÞ; i¼ 1;2;…;n,
then (1.2) and (1.3) can be rewritten as
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dt
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n

j ¼ 1
bijf jðxjðt�τijÞÞþ Ii
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and

xiðsÞ ¼ ϕiðsÞ;
dxiðsÞ
dt

¼ ψ iðsÞ;
yiðsÞ ¼ ϕiðsÞþψ iðsÞ;

8<
: ð2:2Þ

for �τrsr0; i¼ 1;2;…;n.

Let xn ¼ ðxn1; xn2;…; xnnÞT ; yn ¼ ðyn

1; y
n

2;…; yn
nÞT .

Definition 1. The point ððxnÞT ; ðynÞT ÞT is called an equilibrium point
of system (1.2) if it satisfies the following equations for i¼ 1;2;…;n:

�xni þyn

i ¼ 0

hiðxni Þ� ∑
n

j ¼ 1
aijf jðxnj Þ� ∑

n

j ¼ 1
bijf jðxnj Þþ Ii ¼ 0:

8><
>: ð2:3Þ

Lemma 1 (Forti and Tesi [24]). Let H : Rn-Rn be continuous.
Assume that the H satisfies the following conditions:

1. HðuÞ is injective on Rn,
2. JHðuÞJ-1 as JuJ-1.

Then H is a homeomorphism.
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