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ABSTRACT

The performance of nearest-neighbor (NN) classifiers is known to be very sensitive to the distance
metric used in classifying a query pattern, especially in scarce-prototype cases. In this paper, a class-
conditional weighted (CCW) distance metric related to both the class labels of the prototypes and the
query patterns is proposed. Compared with the existing distance metrics, the proposed metric provides
more flexibility to design the feature weights so that the local specifics in feature space can be well
characterized. Based on the proposed CCW distance metric, a multi-hypothesis nearest-neighbor
(MHNN) classifier is developed. The scheme of the proposed MHNN classifier is to classify the query
pattern under multiple hypotheses in which the nearest-neighbor sub-classifiers can be implemented
based on the CCW distance metric. Then the classification results of multiple sub-classifiers are
combined to get the final result. Under this general scheme, a specific realization of the MHNN classifier
is developed within the framework of Dempster-Shafer theory due to its good capability of representing
and combining uncertain information. Two experiments based on synthetic and real data sets were

carried out to show the effectiveness of the proposed technique.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The nearest-neighbor (NN) rule, first proposed by Fix and
Hodges [1], is one of the most popular and successful pattern
classification techniques. Given a set of N labeled samples (or
prototypes) T = {xV, D), ....x™, ™)} with input vector
x® e RP and class label @® € {1, ..., wy}, the NN rule classifies a
query pattern y € R” to the class of its nearest neighbor in the
training set T. The basic rationale of the NN rule is both simple and
intuitive: patterns close in feature space are likely to belong to the
same class. The good behavior of the NN rule with unbounded
numbers of prototypes is well known [2]. However, in many
practical pattern classification applications, only a small number
of prototypes are available. Typically, under such a scarce-
prototype framework, the ideal asymptotical behavior of the NN
classifier degrades dramatically [3]. This problem has driven the
growing interest in finding variants of the NN rule and adequate
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distance measures (or metrics) that help improve the NN classi-
fication performance in small data set situations.

As the core of the NN rule, the distance metric plays a crucial
role in determining the classification performance. To overcome
the limitations of the original Euclidean (L2) distance metric, a
number of adaptive methods have recently been proposed to
address the distance metric learning issue. According to the
structure of the metric, these methods can be mainly divided into
two categories: global distance metric learning and local distance
metric learning [4]. The first learns the distance metric in a global
sense, i.e., to share the same simple weighted (SW) distance metric
for all of the prototypes:
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where X is a prototype in the training set, y is a query pattern to be
classified, and 4; is the weight of the j-th feature. Based on the
above distance metric, the feature weights learning in [5,6] is
formulated as a linear programming problem that minimizes the
distance between the data pairs within the same classes subject to
the constraint that the data pairs in different classes are well
separated. Eick et al. [7] introduce an approach to learn the feature
weights that maximize the clustering accuracy of objects in the
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training set, and similarly, the classification error rate of objects in
the training set is employed to evaluate the feature weights in [8].
Although the above global distance metric learning methods are
intuitively correct, they are too coarse, as the feature weights of
the distance metric are irrelevant with the prior-known class
labels of the prototypes. This issue becomes more severe when
some features behave distinctly for different classes (for example,
one feature may be more discriminative for some classes but less
relevant for others) [9]. Thus, many methods [10-14] have been
developed to learn a distance metric in a local setting, i.e., the
feature weights may be different for different prototypes. The most
representative method is the class-dependent weighted (CDW)
distance metric proposed by Paredes and Vidal [15,16], which is
related to the class index of the prototype:
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where c is the class index of prototype Xx. Although the above CDW
distance metric provides more freedom than the SW metric, the
following example illustrates that this distance metric is insuffi-
cient to reflect the local specifics in feature space for query
patterns in different classes. Fig. 1 illustrates a simple three-class
classification problem, where the data in each class are uniformly
distributed. (xM, A), x®, B) and (x®, C) are two-dimensional data
points in training set T. y; and y, are the query data to be
classified. Considering the classification of data y,, when calculat-
ing the distance between x® and y;, intuitively, to avoid classify-
ing it to Class B mistakenly, the feature value in the X-axis should
be given a larger weight. However, in classifying data y,, it is
reasonable that the feature value in the Y-axis should be given a
larger weight to determine the distance between x® and y,. That
is, the feature weights should also be related to the class labels of
the query patterns to be classified.

Motivated by the above consideration, in this paper we propose
a more general distance metric that associates with both the class
labels of the prototypes and the query patterns. As in classification
problems the class label of the query pattern is not prior-known,
this general distance metric only makes sense when conditioned
on the assumption that the query pattern belongs to a specified
class. Therefore, we define this type of variant as a class-
conditional weighted (CCW) distance metric. Compared with the
existing distance metrics mentioned above, the CCW metric
provides more flexibility to design the feature weights so that
the local specifics in feature space can be well characterized.

Based on the CCW distance metric, this paper develops a multi-
hypothesis nearest-neighbor (MHNN) classifier. The main scheme
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Fig. 1. A three-class classification example.

of this method is to classify the query pattern under multiple
hypotheses in which the nearest-neighbor sub-classifiers can be
implemented based on the CCW distance metric and then to
combine the classification results of multiple sub-classifiers to
obtain the final result. A variety of schemes have been proposed
for deriving a combined decision from individual decisions, such
as majority voting [17], Bayes combination [18], multilayered
perceptrons [19], and the Dempster-Shafer theory (DST) [20-22].
In this paper, a specific realization of the MHNN classifier is
developed within the framework of DST due to its good capability
of representing and combining uncertain information which is
always encountered in classification problems.

The rest of this paper is organized as follows. In Section 2, the
class-conditional weighted distance metric is defined and then
both a heuristic method and a parameter optimization procedure
are designed to derive the involved feature weights. The multi-
hypothesis nearest-neighbor classifier is designed and realized
within the framework of DST in Section 3. Two experiments are
given to evaluate the performance of the proposed method in
Section 4. Finally, Section 5 concludes the paper.

2. Class-conditional weighted distance metric
2.1. Definition

Before defining the class-conditional weighted distance metric
for the purpose of classification, we will first give a general
weighted distance metric between two patterns with prior-
known class labels as follows.

Definition 1 (General weighted distance metric). Suppose x™ and
x™ are two D-dimensional patterns with class labels w, and @wg. A
general weighted distance metric between x™ and x™ can be
defined as
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where 4,4 is a constant that weights the role of the j-th feature in
the distance metric between class w, and class @q.

This definition includes, as particular cases, the distance metrics
revisited in the Introduction. If 4,4;=1 for all p=1,...., M,
q=1,....M, j=1,...,D, the above distance metric is just the L2
distance metric. Moreover, the SW and CDW distance metrics
correspond to the cases where the metric weights are not relevant
to the class labels or are only dependent on the class label of the first
pattern, respectively. Therefore, the above weighted distance metric
provides a more general dissimilarity measure than the L2, SW or
CDW metrics because the weights depend on both class labels of the
two considered patterns.

In NN-based classification, the problem is to calculate the
distance between a prototype and a query pattern, while the class
label of the latter is not prior-known. So, for the purpose of
classification, the above general distance metric only makes sense
conditioned on the assumption that the query pattern belongs to a
specified class wq. We will define this type of variant as follows.

Definition 2 (Class-conditional weighted distance metric). Let
T={xD,0D),...,x™ o™)} be a set of prototypes. The class-
conditional weighted (CCW) distance metric between a query
pattern y and a prototype x € T can be defined as
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where p is the class index of the prototype x and q is the
hypothesized class index of the query pattern y.
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