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a b s t r a c t

A variable universe fuzzy closed-loop control method based on parameter estimation is proposed for
controlling tremor predominant Parkinsonian state. First, the computational model of thalamocortical
relay neuron is established to characterize the cortico-basal ganglia-thalamocortical loop behavior in
relation to Parkinsonian state. Then, in order to estimate critical parameter which exhibits the different
levels of the tremor state, unscented Kalman filter is presented. Finally, an efficient control strategy on
Parkinsonian state is designed by using variable universe fuzzy control theory. In the whole strategy, the
slow variable that is easily reconstructed from the measured membrane potential is regarded as
feedback variable, being vital to excellent control performance and low energy of the control signals. By
comparing with simple proportional–integral control algorithm and ordinary fuzzy control method, it
can be demonstrated that variable universe fuzzy control can avoid the repeated determinations of the
controller's parameters, quicken the convergence speed, and improve the robustness of the controlled
system, which may become a universal and valid method to alleviate any levels of the tremor state, and
its control signals may apply to the current deep brain stimulation.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Deep brain stimulation (DBS) is an effective therapy to alleviate the
symptoms of movement disorders such as essential tremor (ET),
dystonia and Parkinson's disease (PD) [1–3]. The research on optimi-
zation of DBS is of great significance, which has become a prevalent
new trend [4–6]. Thus, DBS's rapid developments not only greatly
enhance the control effects of the neuronal abnormal firing patterns,
but aim to reveal remaining unknown mechanisms underlying [7].
Recently, Feng et al. explored a nonlinear closed-loop learning algo-
rithm to identify effective DBS inputs, and thus, optimal DBS of the
subthalamic nucleus (STN) has been further developed [7]. Moreover,
Schiff et al. designed a model-based rational feedback controller,
which applied to internal segment of the globus pallidus (GPi) to
adjust the abnormal inhibitory synaptic currents into thalamus. They
optimized the controller performance, which is obtained from an
improved proportional–integral–derivative algorithm with amplitude
proportional–derivative control and integral bias [8]. Furthermore, for
the control of tremor-predominant Parkinsonian state, thalamic DBS
plays a more significant role in debilitating tremor [9]. Although these

expanding and in-depth explorations of the DBS optimization con-
tribute to the treatments of the nervous system diseases, the control
strategy still deserves a further investigation.

In a closed-loop scenario of the tremor-predominant Parkinsonian
state, previous studies have proposed a slow variable feedback control
to improve the relay functionality of the thalamocortical (TC) neuron
[10,11]. It has been demonstrated that the loss of TC neuron's relay
ability may result from its pathological rebound activities, whose
fundamental cause is shown as the severe fluctuations of slow low-
threshold T-type Ca2þ current [12]. This may be caused by the
excessive inhibitory synaptic current from GPi nucleus [10,11]. More-
over, the different inhibitory synapses may induce the different
degrees of the tremor behaviors. Considering that this significant slow
variable information and the corresponding level of the synaptic
current cannot be measured directly, unscented Kalman filter (UKF)
can be used to achieve their tracks and estimations from the
measurable TC's neuronal membrane potential [10,11]. However, when
there exist the large external perturbations in the neuronal system and
especially the model of the neuronal system is unknown, the property
of the simple control strategies, such as proportional plus integral (PI)
control algorithm, may be restricted [10]. Hence, this paper aims to
design a closed-loop control strategy to cope with the difficulties
involved in complexity and uncertainty of the neuronal model. For the
existence of the unknown and time-varying parameters, several
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control techniques [13–20] such as variable universe fuzzy control
scheme aremore suitable to be proposed to fight against the challenge
of the selection of controller's parameters, and to break the limitation
of the customized parameters to the great extent.

Early, Takagi–Sugeno (TS) [21] fuzzy systems have been suc-
cessfully used to approximate nonlinear systems, whose main
feature is to express the local dynamics of each fuzzy implication
(rule) [22–26]. Recently, it is shown that rapidly growing popu-
larity of fuzzy control systems has been witnessed in engineering
applications [27–29]. Moreover, in the neuroscience, fuzzy control
has gradually applied to control neurons' firing patterns and
synchronization of a coupled dynamical system with uncertain
parameters [30]. Furthermore, Chen et al. proposed a robust
observer-based tracking control of Hodgkin-Huxley (HH) neuron
systems under environmental disturbances. In order to simplify
the robust tracking control design of nonlinear stochastic HH
neuron systems, they employed a fuzzy interpolation method to
interpolate several linear stochastic systems to approximate a
nonlinear stochastic HH neuron system, which solved the non-
linear robust tracking control problem [31]. Nonetheless, fuzzy
control algorithm is failing in controlling the full dynamics of
stochastic neuron model, whose control design procedure depends
on the specified neuron model [30]. Thus, it is necessary and
significant to propose an adaptive online closed-loop control
method to improve the performance of the fuzzy controller [32]
so as to alleviate the tremor-predominant Parkinsonian symptoms.

Accordingly, in order to optimize the previous closed-loop
control strategy and further to improve the tremor-predominant
Parkinsonian state, this paper aims to design a novel variable
universe fuzzy closed-loop controller. By combining with the
application of the UKF, the improvement of the slow variable
feedback closed-loop control scheme can be achieved. The rest of
this paper is organized as follows. Section 2 outlines computa-
tional model of the TC relay neuron and describes the design of the
controller. Section 3 illustrates the implementation of fuzzy logic
control strategy. In Section 4, qualitative and quantitative results of
the variable universe fuzzy control system based on slow variables
feedback are presented. Finally, the conclusions are given.

2. Model and methods

In order to restore the relay ability of TC neuron, the control
strategy of this study is realized by simulating a computational
model of TC relay neuron. It is shown that, a closed-loop control
strategy can be designed to modulate the firing patterns of the TC
relay neuron [10,11], in which the slow variable of TC relay neuron
is regarded as a commendable feedback signal. It can be seen that,
contrast to the membrane potential feedback, using slow variable
as feedback not only has an advantage of smooth control input
signals with a smaller standard deviation of the control signals,
but also can effectively shorten the adjusting time. Thus, the
closed-loop control strategy based on slow variable exhibits a
better performance. However, traditional PI control algorithm [10]
carries limitations. For instance, the controller parameters such as
proportional gain and integral gain are always set to the constants
via trial-and-error method, which may ignore the uncertainty of
the model and limit controller configuration to auto-update. To
cope with this difficulty of the controller's parameters tuning,
iterative learning control (ILC) scheme is further explored [11]. In
the design of the ILC algorithm, it does not require any particular
knowledge on the detailed physiological. In addition, since ILC is
able to reduce the tracking error of the TC model to zero as the
iterations increase toward infinity, it can improve the control
performance by a simple self-tuning process. Only it has own
limitation and disadvantage. On one hand, repetitive iterative

learning process lengthens the control period; on the other hand,
repetitiveness in the controlled objects is essential to design of ILC
strategy. Thus, considering that these limitations of previous work,
it is vital to develop a novel control strategy to solve the difficulties
involved in unsatisfactory circumstances.

2.1. Overview of the TC neuron model and application of the UKF

The corresponding details of the TC relay neuron model under
the external electric field have been given in the previous work
[10,11,33]. On the basis of the establishment of the TC neuron
model, the evolution of the TC neuronal membrane potential can
be described as follows:

Cm d vTh=d t
� �¼ � IL� INa� IK� IT� IGi-Thþ ISM ð1Þ

where IL, INa, IK and IT represent passive leak current, Naþ current,
Kþ current and low-threshold T-type Ca2þ current across the
membrane, respectively. IGi-Th, the inhibitory synaptic inputs from
GPi neuronal population, represents a critical factor which can induce
the various firing patterns of the TC relay neuron, especially, the
emergence of the tremor predominant Parkinsonian state. However,
since IGi-Th is an unobservable parameter, it is difficult to be
measured directly, which brings us great challenges to identify the
level of the inhibitory currents corresponding to tremor behavior.
Moreover, the excitatory input from sensorimotor cortex is described
by ISM with the term of pulse sequences as follows:

ISM ¼ ASMH sin
2πt
ρSM

� �� �
1�H sin

2πtþDSM

ρSM

� �� �� �
ð2Þ

where ASM , ρSM and DSM are amplitude, period and pulse width of the
pulse sequences respectively. H represents a Heaviside step function,
which has the value 0 for xo0, 1 for x40, and 0.5 for x¼ 0.

The currents are given by the following equations:

IL ¼ gL vThþVe�ELð Þ
INa ¼ gNam

3
1 vThð ÞhTh vThþVe�ENað Þ

IK ¼ gK 0:75 1�hThð Þ4
h i

vThþVe�EKð Þ
IT ¼ gTp

2
1 vThð ÞωTh vThþVe�ETð Þ ð3Þ

where gi and Ei, with iA Na;K ; L; Tf g, represent the maximum ionic
conductance expressed in nS=μm2 and equilibrium reversal poten-
tials expressed in mV, respectively. m1 vThð Þ is the asymptotic
value of the gating variable mTh in the Naþ channel and p1 vThð Þ is
the maximum permeability of the membrane for T-type Ca2þ

channel. Ve represents an external electric field on the TC relay
neuron. The gating variables hTh and ωTh are satisfied with first-
order dynamics defined by Hodgkin and Huxley as follows:

dhTh=dt ¼ h1 vThð Þ�hThð Þ=τh vThð Þ
dωTh=dt ¼ ω1 vThð Þ�ωThð Þ=τω vThð Þ ð4Þ
where X1A h1;ω1

� �
represents the voltage-sensitive steady-

state function and τxA τh; τω
� �

is the time constant of each
channel.

Additionally, m1;h1;ω1; p1
� �

and τh; τω
� �

are defined as
follows:

h1ðvThÞ ¼ 1= 1þexp vThþ41ð Þ=4� �� �
ω1ðvThÞ ¼ 1= 1þexp vThþ84ð Þ=4� �� �
m1ðvThÞ ¼ 1= 1þexp � vThþ37ð Þ=7� �� �
p1ðvThÞ ¼ 1= 1þexp � vThþ60ð Þ=6:2� �� � ð5Þ

τhðvThÞ ¼ 1þexp � vThþ23ð Þ=5� �� �
= 4þ0:128exp � vThþ46ð Þ=18� ��

þ0:128exp � 23vThþ644ð Þ=90� ��
τωðvThÞ ¼ 28þexp � vThþ25ð Þ=10:5� � ð6Þ
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