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a b s t r a c t

Based on the tangency or non-tangency of the periodic solution to certain surface, this paper gives a set

of conditions ensuring global convergence in finite time toward a unique periodic solution for Hopfield

neural networks with discontinuous activations. Moreover, two numerical examples are provided to

illustrate the theoretical results.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, considerable efforts have been devoted to
studying neural networks which can be applied to various science
and engineer fields such as image and signal processing, optimi-
zation, learning memory, and so on (see [1–4]). Such applications
closely relate to the dynamical behaviors of designed neural
networks, such as stability, periodical oscillatory, bifurcation
and chaos. As shown by [5], in many applications, periodic
oscillatory is common and the property of periodic oscillatory
solutions is interesting. For example, the human brain is in
periodic oscillatory or chaos state. In addition, when the neural
networks model the learning memory, periodic solution of the
designed system means that obtaining the idea needs activities
or motion repetitions. Hence, it is important to study neural
networks with periodic oscillatory.

However, up to now, most of the results concerning the neural
networks are based on the assumption that the activations are

continuous or even Lipschitzian (see [1–7] and references
therein). To the best of our knowledge, the paper [8] written by
Forti and Nistri is the first one to handle the global stability of
neural networks with discontinuous activations. As it pointed out,
neural networks with discontinuous activations are of importance
and frequently arise in practice. For example, modeling the
dynamical systems with high slope nonlinearity, the discontin-
uous differential equations may be better candidates than
continuous ones with high and finite slope. So far, the results in
Ref. [8] have been extended by many scholars (see [9–16]).

It is worth to note that the finite time stability of equilibrium
point has been considered in Refs. [9–12]. The global convergence
in finite time toward equilibrium point means all the solutions
reach equilibrium point in finite time not just asymptotically
approach it in infinite time. According to the dynamical qualita-
tive theory, to achieve convergence in finite time, the differential
systems need to be non-Lipschitzian, as non-Lipschitzian property
can give rise to non-uniqueness of solutions in reverse time. Due
to the discontinuity of right hand sides, many discontinuous
differential systems present the property of finite time stability.
In addition, the analysis of the discontinuous cases might reveal
some other important traits of dynamics, such as the presence of
sliding modes along the discontinuity surfaces and the ability of
computing the exact global minimum of the underlying energy
functions, which have been applied in the design of real-time
control and optimization solver (see [17–22]). As far as we know,
most of the existing literatures involving the global convergence
in finite time are concerning equilibrium point (see [17–24]).
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However, as noted by Liu [25], the phenomenon of converging
toward the limit cycle in finite time is also an important dynamical
trait. Although there have been some papers (see [14,26]) studying
the finite time stability of periodic solution, no one presents
rigorous theoretical proof. For example, Ref. [26] only gives a
numerical example where periodic solution is finite time stable
without theoretical proof. And the authors of [14] have shown the
proof of the finite time stability of periodic solution of bi-direc-
tional associative memory neural networks, but it is wrong.

Motivated by the above analysis, we take the following
Hopfield neural networks as an example to present rigorous
theoretical proof of the finite time stability of periodic solution:

x0ðtÞ ¼ f ðt; xðtÞÞ ¼�DðtÞxðtÞþAðtÞgðxðtÞÞþ IðtÞ; ð1:1Þ

where xðtÞ ¼ ðx1ðtÞ; . . . ; xnðtÞÞ
T ARn is the vector of neuron states;

DðtÞ ¼ diagðd1ðtÞ; . . . ; dnðtÞÞARn�n is an o-periodic diagonal matrix
function with diagonal entries diðtÞ40, i¼ 1; . . . ;n, denoting the
neuron self-inhibition; AðtÞ ¼ ðaijðtÞÞn�n is an o-periodic matrix
function whose entries denote the neuron interconnections;
IðtÞ ¼ ðI1ðtÞ; . . . ; InðtÞÞ

T is an o-periodic vector function represent-
ing the neuron input; gðxÞ ¼ ðg1ðx1Þ; . . . ; gnðxnÞÞ

T , where gi,
i¼ 1; . . . ;n, are nonlinear neuron input–output activations and
for each i¼ 1; . . . ;n, gi satisfies the following conditions:

(C1) gi is piecewise continuous, i.e., gi is continuous in R except
a countable set Mi ¼ fri1; . . . ;riki

; . . .g, where ri1ori2o � � �o
riki

o � � � and for each point rijAMi, there exist finite right limit
and left limit, giððrijÞ

þ
Þ and giððrijÞ

�
Þ, respectively and

giððrijÞ
þ
Þ�giððrijÞ

�
Þ40; moreover, gi has at most finite number

of discontinuous points on any compact interval of R.
(C2) gi is monotone nondecreasing.
(C3) D(t), A(t), I(t) are measurable and locally bounded.
Some conditions have been given to ensure the existence,

uniqueness and asymptotical stability of periodic solution for
system (1.1) in Ref. [15]. Based on the existent results, we further
study the finite time stability of periodic solution for system (1.1).

The rest of this paper is organized as follows. Some preliminaries
concerning Filippov theory are presented in Section 2. Section 3
shows the main theorems on finite time stability of periodic
solution. Two numerical examples are given to illustrate the results
in Section 4. At last, we state the conclusion in Section 5.

2. Preliminaries

In this section, we present some knowledge concerning Filip-
pov theory which will be used throughout this paper. For more
details, the readers can refer to [27,28].

In this paper, we consider the Filippov solution of system (1.1),
which is defined as follows:

Definition 2.1 (See Papini and Taddei [15]). A function x :

½t0; TÞ�!Rn is a Filippov solution of system (1.1) if

(1) x is absolutely continuous on any compact interval I� ½t0; TÞ;

(2) x0ðtÞAFðt; xÞ ¼ �DðtÞxðtÞþAðtÞK½gðxðtÞÞ�þ IðtÞ for a:a: tA ½t0; TÞ;

ð2:1Þ

where K½gðxðtÞÞ� ¼ ðK½g1ðx1ðtÞÞ�; . . . ;K½gnðxnðtÞÞ�Þ
T and for i¼

1; . . . ;n,

K½giðxiÞ� ¼ ½giðx
�
i Þ; giðx

þ

i Þ�:

Obviously, Fðt; xÞ is nonempty bounded closed convex valued and
upper semi-continuous in x [27, p. 67, Lemma 1]. The solution
exists in any compact interval [27, p. 83 Theorem 5]. What is
more, the upper semi-continuity implies measurability [27, p. 72].
By the measurable selection theorem [29, p. 308], if x(t) is a

solution of system (2.1), there exists a bounded measurable
function gðtÞAK½gðxðtÞ� such that

x0ðtÞ ¼ �DðtÞxðtÞþAðtÞgðtÞþ IðtÞ for a:a: tA ½t0; TÞ: ð2:2Þ

Function gðtÞ represents the neural network output on ½t0; TÞ.
Moreover, ½xnðtÞ; gnðtÞ� is said to be an o-periodic solution of
system (2.1), if

xnðtþoÞ ¼ xnðtÞ for all tZt0 and gnðtþoÞ ¼ gnðtÞ for a:a: tZt0:

Now, let us introduce the definition of right uniqueness which
is a necessary condition for the global convergence in finite time
toward the periodic solution.

Definition 2.2 (See Filippov [27]). For system (2.1), the right
uniqueness holds at a point ðt0; x0Þ if there exists t14t0 such that
each two solutions of system (2.1) satisfying the condition
xðt0Þ ¼ x0 coincide on the interval ½t0; t1�.

For system (2.1), right uniqueness holds in a domain D if for
each point ðt0; x0ÞAD every two solutions satisfying the condition
xðt0Þ ¼ x0 coincide on each interval ½t0; t1� on which they both exist
and lie in this domain.

Definition 2.3. The o-periodic solution xnðtÞ of system (2.1) is
finite time stable if for any x0ARn, t0AR, there exist tnA ½0;o�
and Tðt0; x0Þo1 such that all the solutions xðt; t0; x0Þ of system
(2.1) with the initial condition xðt0Þ ¼ x0 satisfy

xðTðt0; x0Þ; t0; x0Þ ¼ xnðtnÞ and xðtþTðt0; x0ÞÞ ¼ xnðtþtnÞ for tZ0:

Lemma 2.1 (Chain Rule, see Huang et al. [28]). Suppose that Vðt; xÞ :

R�Rn
�!Rn is regular and that xðtÞ : ½0;1Þ�!Rn is absolutely

continuous on any compact interval of ½0;1Þ. Then x(t) and Vðt; xðtÞÞ

are differential for a.a. tA ½0;1Þ, and we have

d

dt
Vðt; xÞ ¼

@Vðt; xÞ

@t
þ/x; x0ðtÞS; 8xA

@Vðt; xÞ

@x
:

3. Main results

In this section, two main theorems concerning the finite time
stability of periodic solution are shown. First of all, we give some
notations and assumptions.

Let

aij ¼ ess sup
tA ½0;o�

9aijðtÞ9; a
ii
¼�ess sup

tA ½0;o�
aiiðtÞ; di ¼ ess inf

tA ½0;o�
diðtÞ;

0olod ¼ min
i ¼ 1;...;n

fdig; JxJx ¼
Xn

i ¼ 1

xi9xi9; x¼ ðx1; . . . ; xnÞ
T 40;

ð3:1Þ

where x¼ ðx1; . . . ; xnÞ
T 40 means for each i¼ 1; . . . ;n, xi40 and

for function f : I�R�!R, ess suptA If ðtÞ ¼minfMAR : f ðtÞrM

for a:a: tA Ig and ess inf tA If ðtÞ ¼maxfMAR : f ðtÞZM for a:a: tA Ig.

Assumption 3.1. For each i¼ 1; . . . ;n, we have d40 and the
matrix C ¼ ðcijÞn�nARn�n given by

cij ¼ a
ii

for i¼ j; cij ¼�aij for ia j;

is an M-matrix, i.e., C has all non-positive elements outside the
diagonal and all positive successive principal minors.

Assumption 3.1 implies that there exists a positive vector
b¼ ðb1; . . . ;bnÞ

T such that bT C40 (see [30]).
According to Ref. [15], we can obtain the following two

theorems.
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