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a b s t r a c t

The present paper describes a new stochastic multisensory integration system capable of combining a
number of co-registered inputs, integrating different aspects of the external world, into a common
premotor coordinate metric.

In the present solution, the model uses a Stochastic Gradient Descent (SGD) algorithm to blend
different sensory inputs into a single premotor intensionality vector. This is done isochronally, as the
convergence time is independent of the number and type of parallel sensory inputs. This intensionality
vector, generated based on “the sum over histories” [1], makes this implementation ideal to govern non-
continuous control systems. The rapid convergence of the SGD [2–7] is also used to compare with its
biological equivalent in vertebrates -the superior tectum- to evaluate limits of convergence, precision
and variability. The overall findings indicate that mathematical modeling is effective in addressing
multisensory transformations resembling biological systems.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Multisensory integration has only recently started to move
beyond the exclusivity of the cortical mantle and it now accepts
that other structures play a more formative role than the tele-
ncephalic sensory areas [8–20]. Thus, the V1 cortical area in visuali
impared patients, may be activated by auditory, Braille reading or
other somatosensory clues [14–21]. In addition, intense activity
with superadditive properties [10] can occur in the superior
collicullus due to the multisensory activation [18,22]. These
integration sites must be considered in addition to the association
cortices widely known for multisensory convergence [23].

It would be unwise, therefore, given the complexity of the CNS to
address these questions all at once. However, in vertebrate evolution
the optic tectum (superior colliculus) is a multisensory combination
site [24–34] receiving audition, vision, somatosensory and vestibular
inputs, where the inputs from each sensor modality are topographi-
cally organized. However, as these maps do not encode shape or size,
but only spatial continuity and connectedness they are, from a
mathematical perspective, topological rather than topographically
organized [24,30]. The optic tectum, basically addresses multisensory
representation in the context of posture and motricity, but most
importantly, the multisensory stimuli is integrated to organize
responses that exceed the sum of the individual stimuli [10,14] – this
is called superadditivity.

With regard to defining “real time multiple sensory driven
motor control systems,” the issue has been hard to define [35] and
most novel steps taken have been limited [36–41]. Common
drawbacks relate to time response, output convergence, suscept-
ibility to external noise, and most significantly, the proper “homo-
genization” of inputs from different sensors into a single
intentionality vector.

This is essential in interfacing with the motor plant. In addition,
from a dynamic perspective response, time is a non-linear function
relating to the magnitude of the error control required [42–46]. Thus,
sensory-motor convergence speed is directly related to the number of
recurrent cycles (discrete method) required for response stabilization
following sensory input arrival time [4–7,47,48].

1.1. Mathematical Model

Following the issue of supervised, unsupervised and gradient
algorithms, a more precise definition of convergence speed in
large and/or multidimensional data sets is necessary. A prerequi-
site is the use of an open or “unsupervised” algorithm during
sensory input acquisition, to be normalized for generating a
compound image. Following image generation via geometrically
co-registered inputs, the resultant n-dimensional matrix becomes
the supervised parameter on which the center of mass [49] and
the local density distributions are analyzed.

The first part of the algorithm includes the normalization of the
inputs. The basic initial assumption is that all the inputs are
equivalent and that the multiplying factor ki for each, is 1. This
multiplying factor could be a variable filter if its variation can be
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associated with external factors or with the algorithm's cost
functions.

x
0
i; jð Þ ¼ kn Uxnði; jÞ ð1Þ

Such normalization procedure and the internal product for the
factor ki when applied to all the inputs allow their combination
into one single array[13,50–54] the base image.

xm i; jð Þ ¼ x 0
n1 i; jð Þ þ x 0

n2 i; jð Þ þ… x 0
nm i; jð Þ

m
ð2Þ

As a first example of this procedure, the sonar and video input
of a single rectangular object with a 3D projection (from the
Materials and Methods section of this chapter) can be combined to
observe the following results.

The results in Fig. 1 correspond to the co-registered image
space of the two input sensors (camera and sonar). The mathe-
matical analysis requires that, the visual dimensions of the figure
width and height be used as the limit values of the input vectors
xvideo(width, height) and xsonar(width, height), as measured in
pixels.

The information received from the camera, after gray scale
conversion and contrast increase filtering, is represented in each
pixel as xvideo(i, j). See Fig. 1-B.

As with the camera output, the sonar output generates a
different representation of the same object, as is the case in the
biological counterpart with visual and auditory senses and a
common stimulus. The array from the sonar has the same dimen-
sions as the one from the camera, xsonar(i, j). See Fig. 1-C.

Thus far the unsupervised part of the algorithm generates the
base image from the sensory inputs and will produce a normalized
array of the same dimensions of the co-registered inputs of its
summatory.

xm i; jð Þ ¼ ∑
weight

i
∑

height

j

kvideoxvideo i; jð Þþ ksonarxsonar i; jð Þ
m

ð3Þ

Where,

m¼ k1þ k2þ… knrn ð4Þ

This assumes that both inputs are equivalent during the
analysis and the constants ki have one (1) as a value.

From the previous summation equations, the resultant base
image is shown in Fig. 1-D. At this point, the normalized image
X̄m(i,j) has the information necessary to start a simple search to
locate the object or objects, which generate the densities in the
image. As a control, the center of mass is obtained, employing as a
weight the 8 bit gray scale of each pixel. Therefore,

mass i; jð Þ ¼ Pixelgrayscale xm i; jð Þ½ � ð5Þ

and in order to find the coordinates,

Centermass ið Þ ¼
∑width

j ¼ 0 ∑height
i ¼ 0 jUmassði; jÞ

∑width
j ¼ 0 ∑height

i ¼ 0 massði; jÞ
ð6Þ

and for j,

Centermass jð Þ ¼
∑width

i ¼ 0 ∑height
j ¼ 0 iUmassði; jÞ

∑width
i ¼ 0 ∑height

j ¼ 0 massði; jÞ
ð7Þ

The resultant base image with the center of mass located is
represented on Fig. 2 (red circle).

Following the unsupervised center of mass acquisition phase,
the supervised algorithm determines pixel number location to
determine the maximum area density site.

The input array analyzed, the X̄m(i,j), normalized sensor image,
does not contain the expected solution to train a standard
supervised algorithm. Instead, the system optimizes error deter-
mination based on the weight of all the gray scale pixels via a
random sweep of the base image until converging into a max-
imum density area.

An arbitrary size rectangle Pij of dimensions u and v is declared
with origin coordinates given by a random generator algorithm,

Fig. 1. A) Video camera image of a non-processed three-dimensional object. B) Filtered video image of the 3D object. C) Sonar image of the 3D object D) Combination of
images of a 3D object seen by the camera and sonar simultaneously.
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