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The present study explores the capacity of a temporal code generated by the projection neurons of a
realistic computational model of the cuneate nucleus to classify somesthetic stimuli. Four classification
experiments were carried out with a feedforward network trained under a supervised learning
algorithm in which the input is a vector including the sequence of outputs of the cuneate nucleus.
The number of correct responses on each classification task varied with the complexity of the
experiment, but a decrease in the number of errors was observed when presenting the optimal length
of the input vector. This suggests that the cuneate nucleus might (1) transmit the appropriate
information required for input classification, and (2) function as an information processing center and
not merely as a relay or filtering stage.

© 2014 Published by Elsevier B.V.

1. Introduction

Our interest focuses on the information processing of the middle
zone of the cuneate nucleus (CN), which is located at the dorsal
column nuclei and receives input from primary afferents transmit-
ting tactile information from cutaneous receptives located in the
upper trunk. The types of cells found in the cuneate circuitry are the
following [2,7]: projection or cuneothalamic cells (CT), gabaergic
interneurons (GAB), and glycinergic interneurons (GLY). To date,
only the structure of the receptive fields (RFs) of CT cells is known
[5]. Their RFs, determined by the somatotopic organization of the
afferent cells, are made up of an excitatory center as well as an
inhibitory surround mediated by GAB interneurons coming from
adjacent areas. Further experiments [1] suggested that CT cells also
receive: (1) recurrent lateral inhibition induced by GAB interneur-
ons, which are excited from CT cells located at non-adjacent
receptive fields, and (2) recurrent disinhibition, or facilitation,
mediated by GLY interneurons inhibiting GAB interneurons. After
being transformed by the cuneate nucleus, the somesthetic infor-
mation passes to the ventro-postero-lateral (VPL) nucleus of the
thalamus [6] before reaching the primary somatosensory cortex.
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The functional role of the CN is hard to assess experimentally
because of some important methodological limitations: firstly, the
complexity of carrying out intracellular recordings of CN cells in
awaking animals, and secondly, the difficulty of setting and
controlling the stimulation parameters with the required spatial
and temporal accuracy. To overcome these limitations, a realistic
computational model of the CN based on experimental findings
was developed [14]. A scheme of the model describing the
different types of neurons as well as both afferent and recurrent
connections is shown in the left inset of Fig. 1. The neuron's RFs
described above are also depicted in the right inset. In a previous
work [9], it has been shown that this circuitry produces a spatio-
temporal progressive coding that starts signaling regions with
lower regularity (higher intensity contrast), and progressively
covers regions with an increasing degree of regularity (lower
intensity contrast) until the stimulus is filled. In order to visually
explore this code evolving over time, a global output variable has
been chosen. It might represent the activity of a single feature
detector integrating the output of CT neurons at any given time.
The temporal series of this variable reveals an oscillatory pattern
showing a repeated behavior in which the oscillation's amplitude
diminishes with time until a stationary state, corresponding with
the end of the fill-in process, is reached. The analysis of this
behavior discovered positive correlations [9] between the degree
of regularity of the stimuli and some parameters of the oscillatory
pattern such as (1) the duration of the fill-in effect, (2) the
amplitude of the oscillatory patterns during the fill-in effect, and
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Fig. 1. Realistic model of the cuneate nucleus based on experimental findings in
the cat. PA: primary afferents, CT: cuneothalamic cells, GAB: gabergic interneurons
and GLY: glycinergic interneurons. Solid and dashed arrows represent excitatory
and inhibitory synapses, respectively. The shape of RFs for CT, GAB and GLY cells is
also shown.

(3) the amplitude of the residual oscillations when the stationary
state is reached. Similar correlations were found between the size
of the stimuli and the mentioned parameters of the oscillatory
pattern. These findings might suggest that (1) the progressive
coding built at the CN seems to encode salient features of the
stimuli (such as the degree of regularity and size), and (2) the
oscillatory patterns could be useful to decode and classify incom-
ing somesthetic stimuli. This paper is aimed at testing the later
hypothesis.

2. Methods
2.1. Model of cuneate nucleus

Each CT neuron n; has been modeled in a realistic way with the
following firing condition y;(t) = 1 if vj(t) > Oy, where v(t) is the
membrane potential at time t and Gy a positive threshold value.
The membrane potential is updated as follows: v;(t) =vj(t—1)+
I“’m’(t) I“’"’C(t) where the total afferent input I“’m'l(t) being com-
puted by multiplying every input ; inside its receptlve field by its
corresponding synaptic weight wj. The ionic current term [[°" is a
linear combination of the contributions of a sodium current, a
potassium current, a hyperpolarization-activated cationic current,
and a low-threshold calcium current, all currents being supported
by experimental evidence [4,11,12]. The interneurons have been
characterized as simple McCulloch-Pitts units, in which the output
of the jth neuron is y; = ¥ (X w;x;) with activation function ¥ being
of the threshold type, and the strength of the synapse between
neuron ith and neuron jth being described by the weight wj;. As
regards the circuitry, the key aspect is the recurrent loop around
the cuneothalamic neurons, whose state at time t is determined by
the output of other CT neurons at time t—1. These recurrent
connections are responsible for the generation of the temporal
progressive code observed as the output of CT neurons. Further
details of the model and its temporal code can be found in Navarro
et al. (2007) [10].

2.2. Preprocessing the oscillatory pattern of the global output
variable

As described in the Introduction section, a single global output
variable was initially chosen to visualize the progressive coding
generated by the CN over time. The positive correlations found
between some parameters of the global output oscillatory pattern
(see Fig. 2 and panels B1 and B2 of Fig. 3) and salient features of
the stimuli might suggest that this way of coding could be useful
to classify the stimuli at later processing stages. As the oscillatory
pattern of the global output presents doublets, which are repeated
peak values to probably provide a robust postsynaptic response at
the VPL, as well as points of time in which the CN output is silent,
preprocessing was carried out in a two-stage process: the first one
aimed at removing null values and repetitions of the first peak
value, the second one to normalize the data. Panels C1 and C2 of
Fig. 3 show two examples of this transformation.

2.3. Classification with a feedforward network and supervised
learning

Our hypothesis is that the oscillatory patterns could be useful
to classify incoming somesthetic stimuli. To test this idea we have
been inspired by the concept of ideal observer introduced by
Britten et al. (1992) [3]. In their work, an observer has to predict
the motion directions in a two-alternative forced choice task on
the bases of ROC curves derived from behavioral experiments with
monkeys. They found that the observer could perform the dis-
crimination tasks with a similar accuracy that the monkey did. Our
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Fig. 2. Classification experiments to test the encoding capabilities of the temporal
oscillatory pattern. The oscillatory pattern made up of the output_global variable
evolving over time is pre-processed by removing zeros as well as the repeated first
value. The resulting series is the input vector of the classifier. The expected output
(size 2 in this example) is extracted from the training set in order to both compute
the classification error and modify the appropriate learning weights. Arrows
indicate the flow of data in the classification experiments.
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