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a b s t r a c t

To analyze the impact of neural threshold variability in the mushroom body (MB) for pattern
recognition, we used a computational model based on the olfactory system of insects. This model is a
single-hidden-layer neural network (SLN) where the input layer represents the antennal lobe (AL). The
remaining layers are in the MBs that are formed by the Kenyon cell (KC) layer and the output neurons
that are responsible for odor learning. The binary code obtained for each odorant in the output layer by
unsupervised learning was used to measure the classification error. This classification error allows us to
identify the neural variability paradigm that achieves a better odor classification. The neural variability is
provided by the neural threshold of activation. We compare two hypotheses: a unique threshold for all
the neurons in the MB layer, which leads to no variability (homogeneity), and different thresholds for
each MB layer (heterogeneity). The results show that when there is threshold variability, odor
classification performance improves. Neural variability induces populations of neurons that are
specialists and generalists. Specialist neurons respond to fewer stimulus than the generalists. The
proper combination of these two neuron types leads to performance improvement in the bioinspired
classifier.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The olfactory system of insects is made of a complex neural
machinery made of at least four processing layers [1] capable of
classifying a large number of odorants from an unlimited number
of stimuli that are highly variable [2] (different gas concentrations,
mixtures, etc). The main reasons to chose the olfactory system of
insects are the simplicity of the structural organization [3–10], the
nature of the neural coding [2,11–19], the advent of the genetic
manipulation techniques that isolate brain areas during the
formation of memories [20–23], and the extensive odor condition-
ing experiments that shed light into the dynamics of learning
during discrimination tasks [24–29]. Olfactory systems implement
simple mechanisms to realize a quick and stable odorant discri-
mination [30], a goal we want to achieve through computer
modeling. Our focus in this work is on neural variability. The
driving question is how neural heterogeneity impacts system
performance in pattern recognition.

Neural diversity is widespread in the brain, even within the
same neural types there is a large heterogeneity in the intrinsic
properties and the connectivity patterns, one hypothesis that

explains this puzzling observation is functional differentiation
within the same types [31]. Another explication is the hypothesis
of homeostatic regulation of neural systems, in particular in the
olfactory system [32–35]. However, as we show in this paper,
neural heterogeneity can be very beneficial in terms of improving
performance in pattern recognition tasks.

Typical models of the olfactory system use very little variability
in the excitability in the neurons, implemented by fixed neural
thresholds. However, recent applied research on artificial noses
determined that using heterogeneous detection thresholds for
different odorants, you can improve gas discrimination [36,37]. This
is one of the motivations why we study neuron threshold variability
in the information process achieved by the neural olfactory system.
Additionally, it has been reported that neural thresholds vary in
olfactory receptor neurons (ORN) [38] and in Kenyon cells (KCs) [39].
Neural variability in the form of a broad distribution of thresholds is
a generic property of neurons in the brain.

To investigate if neural threshold variability increases odorant
classification performance, we use a simple model of the olfactory
system [40,41] based on McCulloch–Pitts neurons [42]. The insect
olfactory pathway starts at the antenna, where a massive number of
receptors encoding the odor stimulus in a high-dimensional space.
This information is then sent to the AL for additional processing. The
AL exhibits complex dynamics produced by the interaction of its
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excitatory and inhibitory neural populations [43,44,13]. The excita-
tory cells are called projection neurons, PNs, because they only
transmit the result of AL computation to deeper regions. Moreover,
recordings from the AL in the locust indicate that the activity in
the projections of the excitatory neurons of the Locust remains
nearly constant despite large variations of the odor concentra-
tion [45]. Therefore, a gain control mechanism [46,47] controlling
neuronal activity in the AL is likely to exist [48]. The projec-
tion neurons deliver the AL output to a very large number cells of
Kenyon of the MB using a fan-out connectivity that increases the
separability between different odor encodings. This fan-out phase
combined with the sparse firing for these KCs [39,49,50] facilitates
the odorant discrimination process realized in a fan-in phase by
output neurons, which are involved in memory formation and
storage [51,52,20].

We focus on the AL and MB (model in Fig. 1), where the input to
single-hidden-layer neural network (SLN) is the AL activity, which is
connected to MB through a non-specific connectivity matrix [50].
The reason for this non-specific connectivity matrix is due to the
individual connection variability of insects of the same species
[53,54]. The other layers of the SLN, hidden and output, are
composed by KC and output neurons, respectively. These are
connected by a connectivity matrix that implements Hebbian-like
learning [52,55].

Our goal is to analyze, first, how information is processed in the
olfactory system and, second, the role of threshold variability in this
system. Hence, we compare the existence of threshold variability
(heterogeneous thresholds) with their absence (homogeneous
threshold) to determine whether this improves odorant classifica-
tion. To this end, we measure the classification error obtained in the
output layer after applying unsupervised learning. A correctly
classified odorant always generates the same output pattern class
A0 for a given input pattern class A.

We conclude that odorant classification can improve with
neuron threshold variability or heterogeneity, leading us to label
neurons as generalists or specialists [56,57]. Moreover, the classi-
fication performance is closely related to sparse activity of the KC
population [39,58] which can be regulated by neural thresholds
too in addition to the connectivity degrees [50].

2. Olfactory model

2.1. Neuron model

In locusts, activity patterns in the AL are practically time-
discretized by a periodic feedforward inhibition onto the MB

calyxes [59] with very low KC activity [39]. Thus, the information
is represented by time-discrete, sparse activity patterns with the
KCs locked on the 50 ms local field potential oscillation cycle.
Because of these neurons are inactive most of the time, but being
activated, their neuronal response is produced by the coincidence
of concurrent spikes followed by a reset, we have used the
McCulloch–Pitts model [42] in all neurons of the hidden and
output layers, as mentioned above. This neuron model uses the
threshold step function as an activation function. Therefore, we
have the following (see network model in Fig. 2):

yj ¼ φ ∑
NAL

i ¼ 1
cjixi�θj

 !
; j¼ 1;…;NKC ;

zl ¼ φ ∑
NKC

j ¼ 1
wljyj�εl

 !
; l¼ 1;…;NOutN ; ð1Þ

where xi, yj and zl are activation states for an input, a hidden and
an output neuron, respectively, cji and wlj are weights linking two
neurons, θj and εl are thresholds for the hidden and output neuron,
respectively, and φ is the Heaviside activation function. The
Heaviside activation function φ is 0 when its argument is negative
or 0 and 1 otherwise.

2.2. Network model

The network model is a SLN (Fig. 2) with an input layer of 50
neurons, a hidden layer with 2500 neurons (locust has a ratio of
1:50 between neurons of the input and hidden layer) and an
output layer with 5 neurons [41] (Table 1). These dimensions were
chosen because they ensure a high probability of classification for
the input used [40] for a relatively low computational cost.

The connectivity matrices, C and W, are initialized at the
beginning of each learning process. We generate a matrix with
random values uniformly distributed in the range ½0;1�. The binary
connection values in the connectivity matrix use pc and pw, as a
threshold on the values of the random matrix such that if an entry
value is equal or less than pc or pw, the connection is established
otherwise is set to 0. The connectivity matrix C remains fixed
throughout the learning process, while the connectivity matrix W
is updated using Hebbian learning. The synaptic model of this
network is completely binary. Therefore, activation states for a

Fig. 1. The structure of the model is divided into the antennal lobe (AL) and
mushroom body (MB). The MB is divided into the Kenyon cell (KC) layer and output
neurons (OutN). The ratios shown are taken from the locust brain size in this
particular case.

Fig. 2. Network model composed of three layers: antennal Lobe, Kenyon cells and
output neurons. The input layer X is connected to the hidden layer Y by a random
matrix C. This hidden layer is connected to the output layer Z by other random
matrix W, whose weights are updated by Hebbian learning. These randommatrices
are created with connection probabilities pc and pw. The thresholds, biases, of
hidden neurons and output neurons are θ and ε respectively.
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