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a b s t r a c t

This paper investigates the problem of stochastic finite-time state estimation for a class of uncertain
discrete-time Markovian jump neural networks with time-varying delays. A state estimator is designed
to estimate the network states through available output measurements such that the resulted error
dynamics is stochastically finite-time stable. By stochastic Lyapunov–Krasovskii functional approach,
sufficient conditions are derived for the error dynamics to be stochastic finite-time stable. The desired
state estimator is designed via linear matrix inequality technique. Simulation examples are provided to
illustrate the effectiveness of the obtained results.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the past few decades, neural networks have attracted consider-
able attention due to a variety of their applications, including signal
processing, pattern recognition, target tracking, static image proces-
sing and associative memories [1–3]. Meanwhile, time delay, referred
as a typical characteristic of the signal transmission between neurons,
has been recognized as one of the major causes of instability and poor
performance of network dynamics. Therefore, a great deal of works
has been done for various types of neural networks with parameter
uncertainties and time-delays, such as asymptotic stability, exponen-
tial stability, passivity analysis, and the existence of an equivalent
point [4–9]. More results on the topic could be found in [10–12] and
the references therein.

On the other hand, the information latching often happens in
neural networks, which means that a neural network may have
finite modes that may switch from one to another at different time.
Therefore, the class of neural networks can be disposed by the
theoretical framework of Markovian jump systems since the switch-
ing between different modes may be governed by a Markov chain.
Markovian jump neural networks with time-delays have attracted a

lot of research interests in mathematics and control communities,
and many results have been reported in the literature, see, for
example, [13,14] and the references therein. For instance, exponen-
tial stability criteria were derived for time-delay recurrent neural
networks with Markovian jumping parameters in [15]. The passivity
analysis was considered for discrete-time neural networks with
Markovian jumps and mixed time-delays in [16]. Applying the input
delay approach and linear matrix inequality (LMI) technique, the
authors [17] studied the problem of sampled-data synchronization
for Markovian jump neural networks with time-varying delay and
variable samplings.

It should be pointed out that all the above-mentioned works
assume that the considered neuron states are fully available.
However, the assumption cannot always be satisfied in real applica-
tions. Therefore, it is important and necessary to estimate the
neuron state through available output measurements to make full
use of neural networks in practice. For instance, the authors [18]
addressed state estimation for delayed neural networks employing
the LMI technique, in which the neuron activation function of the
measurement nonlinearity satisfies the standard Lipschitz condition.
In [19], the state estimation problems were investigated for delayed
neural networks with Markovian jump parameters under the same
Lipschitz condition for the measurement nonlinearity. Very recently,
the problem of state estimation was studied for continuous-time
neural networks with Markovian jumps and distributed delays
under the assumption that the neuron activation function and the
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nonlinearity satisfy the type of sector-bounded conditions in [20].
For more works of the literature related to state estimation of neural
networks, readers can refer [21,22] and the references therein.

It is well known that classical control theory mainly tackles the
asymptotic behavior of the system trajectories over an infinite
interval. In practice, however, main attention may be related to the
behavior of the dynamics over a fixed finite time interval, such as
keeping the acceptable values in a prescribed bound in the
presence of saturations [23]. In [24], finite-time stability or short
time stability was first introduced in order to deal with the
transient performance of control systems. Then, employing Lyapu-
nov function approach and LMI technique, some important results
related to the topic have been extended to finite-time stability,
finite-time boundedness and finite-time stabilization for contin-
uous- or discrete-time systems. For instance, the finite-time con-
trol problem was studied for discrete-time linear systems in [25].
In [26], the finite-time boundedness analysis was conducted for
continuous-time neural networks with Markovian jumping para-
meters and time-delays. Recently, finite-time state estimation was
investigated in [27] for continuous-time neural networks with
time-varying delays by applying an augmented Lyapunov–Krasovs-
kii functional. More results related to finite-time stability, finite-
time boundedness and finite-time H1 control could be found in
[28–35]. However, to date and to the best of our knowledge, the
finite-time state estimation problem for discrete-time delayed
neural networks with Markovian jumps has not been fully inves-
tigated in the literature yet and it motivates us to carry out the
present study.

The main contribution of the paper is that we provide sufficient
conditions for robust stochastic finite-time state estimation of
uncertain discrete-time neural networks with Markovian jumps
and time-varying delays. More specifically, under the assumption
that the activation functions satisfying the sector-bounded condi-
tions that are more general than the commonly used Lipschitz
ones, a state estimator is designed such that the state of the error
dynamics is bounded in mean-square sense in a specified time
interval. Based on the stochastic Lyapunov–Krasovskii functional
approach, sufficient criteria on stochastic finite-time state estima-
tion are derived for the nominal and uncertain error dynamics.
The conditions are reduced to LMIs-based feasibility problems.
The rest of this paper is outlined as follows. Section 2 formulates
the problem to be studied, and recalls some preliminaries. The
main results are provided in Section 3. Numerical examples are
given in Section 4 to illustrate the effectiveness of the obtained
results, and the conclusions are drawn in Section 5.

Notations: In the sequel, Nþ , Rn, and Rn�m represent the set of
nonnegative integers, the sets of n component real vectors and
n�m real matrices, respectively. Ef�g denotes the expectation
operator with respect to some probability measure. AT stands for
the transpose of the matrix or vector A, the symbol n represents
the transposed elements in the symmetric positions of a matrix,
I represents the identity of appropriate dimension, In denotes the
identity of n dimension, and diagð⋯Þ stands for a block-diagonal
matrix. Matrices, without special stated, are assumed to be
compatible for algebraic operations.

2. Problem formulation

Consider the discrete-time time-delay neural network with
Markovian jumps and uncertainties described as follows:

xðkþ1Þ ¼AðrkÞxðkÞþBðrkÞf ðxðkÞÞþCðrkÞgðxðk�hðkÞÞÞ;
yðkÞ ¼HðrkÞxðkÞ;
xðjÞ ¼ φðjÞ; jAf�hM ;…; �1;0g; ð1Þ

where xðkÞ ¼ ½x1ðkÞ; x2ðkÞ;…; xnðkÞ�T ARn is the state vector of the
neuron network, yðkÞARm is the measurement output, h(k) repre-
sents the transmission delay satisfying 0ohmrhðkÞrhM , in which
hm and hM are prescribed positive integers representing the lower
and upper bounds of the delay, respectively. f ðxðkÞÞ and
gðxðk�hðkÞÞÞ are the neuron activation functions. AðrkÞ;BðrkÞ and
CðrkÞ are coefficient matrices satisfying

½AðrkÞ;BðrkÞ; CðrkÞ� ¼ ½AðrkÞ;BðrkÞ;CðrkÞ�þMðrtÞΔðrk; kÞ½N1ðrkÞ;N2ðrkÞ;N3ðrkÞ�;
ð2Þ

where Δðrk; kÞ is an unknown, time-varying matrix function and
satisfies ΔT ðrk; kÞΔðrk; kÞr I for all kANþ . AðrkÞ ¼ diagða1ðrkÞ;
a2ðrkÞ;…; anðrkÞÞ is the known mode-dependent diagonal matrix.
The mode-dependent matrices BðrkÞ, CðrkÞ and HðrkÞ are the connec-
tionweight matrix, the delayed connectionweight matrix and the gain
matrix of the network measurement, respectively. MðrkÞ;N1ðrkÞ;N2ðrkÞ
and N3ðrkÞ are known mode-dependent matrices. The matrices
are functions of the stochastic jump process frk; kZ0g, which is a
discrete-time, discrete-state Markov chain taking values in a finite set
Λ¼ f1;2;…; sg with transition probabilities

Prfrkþ1 ¼ jjrk ¼ ig ¼ πij; ð3Þ
where πijZ0 and ∑s

j ¼ 1πij ¼ 1 for all iAΛ.
For notational simplicity, in the sequel, for each possible rk ¼ i; iAΛ,

a matrix GðrkÞ will be denoted by Gi; for instance, AðrkÞ will be denoted
by Ai, BðrkÞ by Bi, and so on. In addition, �Pi denotes ∑s

j ¼ 1πijPj.
In order to estimate the state of the neural network (1), we

construct the following state estimator:

~xðkþ1Þ ¼Ai ~xðkÞþBif ð ~xðkÞÞþCigð ~xðk�hðkÞÞÞþKi½yðkÞ�Hi ~xðkÞ�;
~xðjÞ ¼ ϕðjÞ; jAf�hM ;…; �1;0g; ð4Þ
where ~xðkÞ is the state estimation of the neuron network (1) and Ki

is the state estimator gain matrix to be designed.
Define eðkÞ ¼ xðkÞ� ~xðkÞ, FðkÞ ¼ f ðxðkÞÞ� f ð ~xðkÞÞ and Gðk�hðkÞÞ ¼

gðxðk�hðkÞÞÞ�gð ~xðk�hðkÞÞÞ. Then, the error dynamics of the neural
network can be obtained from (1) and (4) as follows:

eðkþ1Þ ¼ ðAi�KiHiÞeðkÞþBiFðkÞþCiGðk�hðkÞÞ;
eðjÞ ¼ φðjÞ�ϕðjÞ; jAf�hM ;…; �1;0g: ð5Þ
In this paper, we have the following assumption for the neuron

activation functions.

Assumption 1 (Chen and Zheng [20]). The neuron state-based
nonlinear functions f ð�Þ and gð�Þ in (1) are continuous and satisfy
f ð0Þ ¼ 0 and gð0Þ ¼ 0 and the following sector-bounded conditions:

½f ðxÞ� f ðyÞ�U1ðx�yÞ�T ½f ðxÞ� f ðyÞ�U2ðx�yÞ�r0; ð6Þ

½gðxÞ�gðyÞ�V1ðx�yÞ�T ½gðxÞ�gðyÞ�V2ðx�yÞ�r0: ð7Þ
where U1;U2;V1 and V2 are real matrices of appropriate
dimensions.

Remark 1. Note that, when U1 ¼ �U2 ¼U and V1 ¼ �V2 ¼ V ,
conditions (6) and (7) are respectively reduced to

½f ðxÞ� f ðyÞ�T ½f ðxÞ� f ðyÞ�r ½x�y�TUTU½x�y�;
½gðxÞ�gðyÞ�T ½gðxÞ�gðyÞ�r ½x�y�TVTV ½x�y�:

That is to say that the standard Lipschitz conditions jf ðxÞ� f ðyÞj
rUjx�yj and jgðxÞ�gðyÞjrV jx�yj hold when U40 and V40.
Therefore, the neural network model (1) under Assumption 1 is
more general than those described by [18,19].

Throughout the paper, we need the following definition and
lemma.

Definition 1 (Zhang et al. [29,31]). The error dynamics (5) is said
to be stochastically finite-time stable with respect to ðδ; ϵ;Ri;NÞ,
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