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a b s t r a c t

The regularized linear discriminant analysis (RLDA) technique is one of the popular methods for
dimensionality reduction used for small sample size problems. In this technique, regularization
parameter is conventionally computed using a cross-validation procedure. In this paper, we propose a
deterministic way of computing the regularization parameter in RLDA for small sample size problem.
The computational cost of the proposed deterministic RLDA is significantly less than the cross-validation
based RLDA technique. The deterministic RLDA technique is also compared with other popular
techniques on a number of datasets and favorable results are obtained.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Linear discriminant analysis (LDA) is a popular technique for
dimensionality reduction and feature extraction. Dimensionality
reduction is a pre-requisite for many statistical pattern recognition
techniques. It is primarily applied for improving generalization
capability and reducing computational complexity of a classifier. In
LDA the dimensionality is reduced from d-dimensional space to
h-dimensional space (where hod) by using a transformation
WAℝd�h. The transformation (or orientation) matrix W is found
by maximizing the Fisher’s criterion: J Wð Þ ¼ jWTSBWj=jWTSWWj,
where SW Aℝd�d is within-class scatter matrix and SBAℝd�d is
between-class scatter matrix. Under this criterion, the transforma-
tion of feature vectors from higher dimensional space to lower
dimensional space is done in such a manner that the between-
class scatter in the lower dimensional space is maximized and
within-class scatter is minimized. The orientation matrix W is
computed by the eigenvalue decomposition (EVD) of S�1

W SB [1].
In many pattern classification applications, the matrix SW

becomes singular and its inverse computation becomes impossi-
ble. This is due to the large dimensionality of feature vectors
compared to small number of vectors available for training. This
is known as small sample size (SSS) problem [2]. There exist
several techniques that can overcome this problem [3–11,19–34].
Among these techniques, regularized LDA (RLDA) technique [3] is

one of the pioneering methods for solving SSS problem. The RLDA
technique has been widely studied in the literature [12–14]. It has
been applied in areas like face recognition [13,14] and bioinfor-
matics [15].

In the RLDA technique, the SW matrix is regularized to over-
come the singularity problem of SW . This regularization can be
done in various ways. For example, Zhao et al. [12,16,17] have done
this by adding a small positive constant α (known as regularization
parameter) to the diagonal elements of matrix SW ; i.e., the matrix
SW is approximated by SW þαI and the orientation matrix is
computed by EVD of SW þαIð Þ�1SB. The performance of RLDA
technique depends on the choice of the regularization parameter
α. In the past studies [18], this parameter is chosen rather
heuristically, for example, by applying cross-validation procedure
on the training data. In the cross-validation based RLDA technique
(denoted here as CV-RLDA), the training data is divided into two
subsets: training subset and validation subset. The cross-validation
procedure searches over a finite range of α values and finds an α
value in this range that maximizes the classification accuracy over
the validation subset. In the cross-validation procedure, the
estimate of α depends on the range over which it is explored.
For a given dataset, its classification accuracy can vary depending
upon the range of α being explored. Since many values of α have to
be searched in this range, the computational cost of this procedure
is quite high. In addition, the cross-validation procedure used in
the CV-RLDA technique is biased towards the classifier used.

In order to address these drawbacks of CV-RLDA technique, we
explore a deterministic way for finding the regularization para-
meter α. This would provide a unique value of the regularization
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parameter on a given training data. We call this approach as the
deterministic RLDA (DRLDA) technique. This technique avoids the
use of the heuristic (cross-validation) procedure for parameter
estimation and improves the computational efficiency. We show
that this deterministic approach computes the regularization
parameter by maximizing the Fisher’s criterion and its classifica-
tion performance is quite promising compared to other LDA
techniques.

2. Related work

In a SSS problem, the within-class scatter matrix SW becomes
singular and its inverse computation becomes impossible. In order
to overcome this problem, generally inverse computation of SW is
avoided or approximated for the computation of orientation
matrix W. There are several techniques that can overcome this
SSS problem. One way to solve this problem is by estimating the
inverse of SW by its pseudoinverse and then the conventional
eigenvalue problem can be solved to compute the orientation
matrix W. This was the basis of pseudoinverse LDA (PILDA)
technique [20]. Some improvements of PILDA have also been
presented in [28,31]. In Fisherface (PCAþLDA) technique,
d-dimensional features are firstly reduced to h-dimensional fea-
ture space by the application of PCA [2,52,53] and then LDA is
applied to further reduce features to k dimensions. There are
several ways for determining the value of h in PCAþLDA technique
[4,5]. In the Direct LDA (DLDA) technique [7], the dimensionality is
reduced in two stages. In the first stage, a transformation matrix is
computed to transform the training samples to the range space of
SB, and in the second stage, the dimensionality of this transformed
samples is further transformed by some regulating matrices. The
Improved DLDA technique [11], addresses drawbacks of DLDA
technique. In the improved DLDA technique, first SW is decom-
posed into its eigenvalues and eigenvectors instead of SB matrix as
of DLDA technique. Here, both its null space and range space
information are utilized by approximating SW by a well determi-
nistic substitution. Then SB is diagonalized using regulating
matrices. For the Null LDA (NLDA) technique [6], the orientation
W is computed in two stages. In the first stage, the data is
projected on the null space of SW and in the second stage it finds
W that maximizes jWTSBWj. In orthogonal LDA (OLDA) technique
[8], the orientation matrix W is obtained by simultaneously
diagonalizing scatter matrices. It has shown that OLDA is equiva-
lent to NLDA under a mild condition [8]. The Uncorrelated LDA
(ULDA) technique [21], is a slight variation of OLDA technique. In
ULDA, the orientation matrix W is made uncorrelated. The fast
NLDA (FNLDA) technique [25], is an alternative method of NLDA. In
this technique, the orientation matrix is obtained by using the
relation W¼ Sþ

T SBY, where Y is a random matrix of rank c�1, and
c is the number of classes. This technique is so far the fastest
technique of performing null LDA operation. In extrapolation LDA
(ELDA) technique [32], the null space of SW matrix is regularized
by extrapolating eigenvalues of SW using exponential fitting
function. This technique utilizes range space information and null
space information of SW matrix. The two stage LDA (TSLDA)
technique [34], exploits all four informative spaces of scatter
matrices. These spaces are included in two separate discriminant
analyses in parallel. In the first analysis, null space of SW and range
space of SB are retained. In the second analysis, range space of SW
and null space of SB are retained. In eigenfeature regularization
(EFR) technique [10], SW is regularized by extrapolating its
eigenvalues in its null space. The lagging eigenvalues of SW is
considered as noisy or unreliable which are replaced by an
estimation function. The general tensor discriminant analysis
(GTDA) technique [48] has been developed for image recognition

problems. This work focuses on the representation and pre-
processing of appearance-based models for human gait sequences.
Two models were presented: Gabor gait and tensor gait. In [49],
authors proposed a constrained empirical risk minimization fra-
mework for distance metric learning (DML) to solve SSS problem.
In double shrinking sparse dimension reduction technique [50],
the SSS problem is solved by penalizing the parameter space. A
detailed explanation regarding LDA is given in [51] and an over-
view regarding SSS based LDA techniques is given in [47]. There
are other techniques which can solve SSS problem and applied in
various fields of research [54–62]. In this paper, we focus on
regularize LDA (RLDA) technique. This technique overcomes SSS
problem by utilizing a small perturbation to the SW matrix. The
details of RLDA have been discussed in the next section.

3. Regularized linear discriminant techniques for SSS problem

In the RLDA technique, the within-class scatter matrix SW is
approximated by adding a regularization parameter to make it a
non-singular matrix [3]. There are, however, different ways to
perform regularization (see for details, [3,12–14,16,17,30,33]). In
this paper we adopted Zhao’s model [12,16,17] to approximate SW
by adding a positive constant in the following way ŜW ¼ SW þαI.1

This will make within-class scatter matrix a non-singular matrix
and then its inverse computation would be possible. The RLDA
technique computes the orientation matrix W by EVD of Ŝ

�1
W SB.

Thus, this technique uses null space of SW , range space of SW and
range space of SB in one step (i.e., simultaneously).

In the RLDA technique, a fixed value of regularization para-
meter can be used, but it may not give the best classification
performance as shown in Appendix B. Therefore, the regulariza-
tion parameter α is normally computed by the cross-validation
procedure. The cross-validation procedure (e.g. leave-one-out or
k-fold) employs a particular classifier to estimate α and is con-
ducted on the training set (which is different from the test set). We
briefly describe below the leave-one out cross-validation proce-
dure used in the CV-RLDA technique. Let ½a; b� be the range of α to
be explored and α0 be any value in this range. Consider a case
when n training samples are available. The training set is first
subdivided into training subset (consisting of n�1 samples) and
validation subset (consisting of 1 sample). For this particular
subdivision of training set, the following operations are required:
(1) computation of scatter matrices SB, SW and ŜW ¼ SW þα0I for
n�1 samples in the training subset; (2) EVD of Ŝ

�1
W SB to compute

orientation matrix W; and (3) classification of the left out sample
(from the validation subset) by the classifier to obtain the
classification accuracy. These computational operations are carried
out for n�1 subdivisions of the training set and the average
classification accuracy over the n�1 runs is computed. This
average classification accuracy is obtained for a particular value
of α (namely α0). All the above operations will be repeated for
other values of α in the range ½a; b� to get the highest average
classification accuracy. From this description, it is obvious that the
cross-validation procedure used in the CV-RLDA technique has the
following drawbacks:

� Since the cross-validation procedure repeats the above-mentioned
computational operations many times for different values of α, its
computation complexity is extremely large.

1 In the Friedman’s model [3], SW is estimated as ŜW ¼ 1�αð ÞSW þαI. We have
compared Zhao’s model and Friedman’s model of CV-RLDA and found that Zhao’s
model exhibits comparatively better generalization capability (see Appendix A for
details). Furthermore, we have considered Zhao’s model because it is relatively
simpler for establishing deterministic approach of computing α (in DRLDA).
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