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a b s t r a c t

Many well-known machine learning and pattern recognition methods can be seen as special cases of
sparse minimization of Positive Definite Quadratic Forms (PDQF). An algorithm framework of sparse
minimization is proposed for PDQF. It is theoretically analyzed to converge to global minimum. The
computational complexity is analyzed and compared with the state-of-the-art Fast Iterative Shrinkage-
Thresholding Algorithm (FISTA). Some well-known machine learning and pattern recognition methods
are illustrated to be optimized by the proposed algorithm framework. Illustrative experiments show that
Sparse Representation Classification (SRC) and Least Absolute Shrinkage and Selection Operator (LASSO)
via the proposed method converges much faster than several classical methods.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Positive Definite Quadratic Forms (PDQF) are very common in
machine learning and pattern recognition. Many methods, such as
Least Squares (LS) [13], linear regression [9] and ridge regression
[19], can be seen as special cases of PDQF. There is close-form sol-
ution for minimization of plain PDQF. However, if some additional
constraints are imposed on the solution of PDQF, one may need to
resort to optimization computation, such as quadratic program-
ming [4] or more general convex optimization [5].

Recently, sparsity constraint, which makes most of elements of
solution vector be zero, aroused great research interests due to its
meaningful application backgrounds. Least Absolute Shrinkage and
Selection Operator (LASSO) [18] added sparse minimization con-
straint (l1-minimization) on the solution of regression between
predictors and response to achieve the goal of variable selection.
Elastic Net [27] added l2-smooth term in LASSO to make the sparse
regression coefficient more stable. Nie et al. [15] generalized the
sparse minimization to l2;1�norm for robust feature selection.
Generalized LASSO [17] considered LASSO in kernel space. Sparse

representation classification (SRC) [24] pursued sparse linear recon-
struction of test sample with training samples for classification.
Kernel SRC [25,10] performed SRC in kernel space. Sparse coding
[14] learnt succinct representations of stimuli with sparse constraint
on coefficients. There are also lots of related work of l1-norm based
optimization for linear dimensionality reduction, such as l1-norm
based Principal Component Analysis (PCA_L1) [12], l1-norm based
Linear Discriminant Analysis (LDA_L1) [21], l1-norm based Two-
Dimensional PCA (2DPCA_L1) [22] and robust sparse-preserved
learning [23].

Many of these methods can be cast into sparse minimization of
PDQF. Generally, quadratic programming [4] or more general convex
optimization [5] can be applied to these quadratic problems. How-
ever, the optimization procedure is complicated and the computa-
tional complexity is very high. Specifically, much simpler gradient
projection algorithms [8] and iterative shrinkage-thresholding algo-
rithms (ISTA) [6], where each iteration only involves matrix-vector
multiplication followed by a shrinkage/soft-threshold step, are
proposed to solve the linear inverse problems with sparsity con-
straints. However, such methods are also known to converge quite
slowly. Recently, Beck and Teboulle [3] proposed a fast iterative
shrinkage-thresholding algorithm (FISTA) for linear inverse pro-
blems, which preserves the computational simplicity of ISTA but
with a global rate of convergence which is proven to be significantly
better. There also appear other optimization methods for solving
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sparse minimization problems recently, such as Coordinate Gradient
Descent (CGD) [26] and Alternating Direction Method of Multipliers
(ADMM) [20]. However, we found that these methods converge still
very slowly in practice.

In this paper, we propose a simpler and efficient iteration
algorithm framework of sparse minimization for PDQF. It is proved
to converge to global minimum. The computational complexity of
the proposed algorithm is analyzed and compared with classical
FISTA. Some well-known machine learning and pattern recogni-
tion methods are illustrated to be optimized by the proposed
algorithm framework. Experiments of Sparse Representation Clas-
sifications (SRC) [24] and Least Absolute Shrinkage and Selection
Operator (LASSO) via the proposed method are implemented and
compared with those via classical FISTA, CGD and ADMM to show
the superiority of the proposed method.

2. Sparse minimization for positive definite quadratic form

2.1. The formulation

Let the positive definite quadratic form f ðwÞ be
f ðwÞ ¼w>Aw�2w>bþc; ð1Þ
where parameter w¼ ðw1;w2;…;wnÞ> ARn, square symmetric
quadratic term coefficient AARn�n is strictly positive definite,
satisfying v>Av40 for any n-dimensional nonzero vector v,
first-order coefficient bARn and constant term cAR. c is omitted
since it has no effect on the solution of optimizing (1). The
objective function f ðwÞ in (1) is strictly convex with respect to w
and is bounded below. In particular, it has one global minimum
and no local minima. Usually, the solution of minimizing f ðwÞ
directly is not sparse.

There are many circumstances where the solution of minimiz-
ing (1) should be sparse with many entries being zeros, i.e.,
‖w‖0rT . The l0-norm ‖w‖0 of vector w is the number of non-
zero entries. The sparse-constrained minimization of f ðwÞ is
formulated as

min
w

f ðwÞ; s:t: ‖w‖0rT ; ð2Þ

or in Lagrange multiplier formulation

min
w

f ðwÞþλ‖w‖0: ð3Þ

where λ40 is a tuning parameter. However, since the l0-norm
‖w‖0 is counting number of non-zero entries and is not differenti-
able, it is hard to minimize the optimization problem of (3).

To obtain a sparse solution of minimizing f ðwÞ, the l1-norm
minimization of w is commonly adopted to be added as a
constraint

min
w

LðwÞ ¼ f ðwÞþλ‖w‖1; ð4Þ

where l1-norm ‖v‖1 of an n-dimensional vector v¼ ðv1; v2;…; vnÞ>
is the sum of its absolute elements, ‖v‖1 ¼∑n

i ¼ 1jvij. Based on the
theory of sparse representation and compressed sensing [7], the
solution of l1-norm minimization of (4) is equivalent to that of
l0-norm minimization of (3).

Since both of the two items of (4) are convex with the first one
strictly convex, then the whole formula in (4) is also strictly
convex with respect to w. Therefore, there exists a unique global
minimum for sparse minimization of (4) with no local minima.

2.2. Optimization algorithm

To obtain the global minimization solution of (4), we propose an
iterative algorithm, which can be summarized as in Algorithm 1. In
each iteration step, diagonal matrixM is calculated with the currentw

as in (5), and then coefficient vector w is updated based on the just
calculated M as in (6). The iteration procedure between (5) and (6) is
repeated until the algorithm converges.

Algorithm 1. Procedure of l1-minimization for positive definite
quadratic form.

1: Input: Coefficients of positive definite quadratic form
AARn�n and bARn, initial non-zero solution wð0ÞARn,
tuning parameters λ40, maximum number of iterations
tmax or relative residual error tolerance ε40;

2: Set t¼0;
3: Update diagonal matrix

MðtÞ ¼ diag
ffiffiffiffiffiffiffiffiffiffiffi
jwðtÞ

1 j
q

;
ffiffiffiffiffiffiffiffiffiffiffi
jwðtÞ

2 j
q

;…;

ffiffiffiffiffiffiffiffiffiffiffi
jwðtÞ

n j
q� �

; (5)

4: Update solution

wðtþ1Þ ¼MðtÞ MðtÞAMðtÞ þλ
2
In

� ��1

MðtÞb; (6)

where In is an identity matrix of order n;
5: If t4tmax or jLðwðtþ1ÞÞ�LðwðtÞÞj=LðwðtÞÞoε, go to step 6,

otherwise, let t ¼ tþ1 and go to step 3;
6: Output: The optimal solution wn ¼wðtþ1Þ.

2.3. Justification

In this section, we will see that Algorithm 1 does converge to
the unique global minimum of l1-minimization problem (4). Let
LðwÞ denote the objective function of l1-minimization in (4). Note
that LðwÞ is a strictly convex function of w and there are no local
minima. Strictly convex functions could not have interior points
being global maximum, local maxima or saddle points. Then only
global minimum could satisfy the Karush-Kuhn-Tucker (KKT) first
order necessary conditions (for a solution in nonlinear program-
ming to be optimal) [5].

Therefore, we only need to prove two things. The first one is
that the objective function value LðwÞ is decreasing along with
each iteration in Algorithm 1, which is summarized in Theorem 1.
The second one is that the limit solution obtained by the iteration
of Algorithm 1 satisfies the KKT conditions, which is summarized
in Theorem 4.

Theorem 1. The objective function value LðwÞ in l1-minimization (4)
is decreasing, Lðwðtþ1ÞÞrLðwðtÞÞ, along with each alternate iteration
of formulae (5) and (6) in Algorithm 1. The equality holds only at
convergence.

To prove Theorem 1, we need the help of the following two
Lemmas, which are needed to be proved firstly.

Lemma 2. Let index set Ct ¼ fijwðtÞ
i a0; i¼ 1;2;…;ng. Define an

auxiliary function

Gðw;wðtÞÞ ¼ f ðwÞþλ ∑
iACt

w2
i

2jwðtÞ
i j

: ð7Þ

Along with the solution sequence fwðtÞ; t ¼ 0;1;2;…g obtained in
Algorithm 1, the following inequality holds,

Gðwðtþ1Þ;wðtÞÞrGðwðtÞ;wðtÞÞ: ð8Þ
The equality holds only at convergence.

Proof. Since the two terms in minimizing auxiliary function
Gðw;wðtÞÞ are both semi-definite programming (SDP) problems,
we can obtain the unique global optimal solution of minimizing
Gðw;wðtÞÞ by taking the derivatives and letting them equal to zero.
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