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a b s t r a c t

A recurrent neural dynamics (termed improved Zhang dynamics, IZD), together with a specially-
constructed activation function, is proposed and investigated for finding the root of nonlinear equation
in this paper. It is analyzed that the IZD model can converge to the theoretical solution within finite time.
Besides, the upper bound of convergence time is estimated analytically. Compared with conventional
gradient-based dynamics (GD), our proposed IZD model in the form of implicit dynamics has the
following advantages: (1) has better consistency with actual situations; and (2) has a greater ability in
representing dynamical systems. Besides, our model can achieve superior convergence performance (i.e.,
finite-time convergence) in comparison with the existing neural dynamics, specifically the original ZD
(OZD) model. Both theoretical analysis and computer-simulation results substantiate the effectiveness
and superiority of the IZD model for solving nonlinear equation in real-time.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that a wide class of problems, which arises in
engineering practices and scientific applications, can be studied via
the nonlinear equations using the innovative techniques [1–5]. To
solve the nonlinear-equation problem in real-time, in mathematics,
almost all methods/techniques are based on the following defining
equation [1–11]:

f ðxÞ ¼ 0AR; ð1Þ

where f ð�Þ : R-R denotes a smooth nonlinear function. Due to the
nonlinearity of f(x), nonlinear equation (1) may have no solutions.
Throughout the paper, we assume that the solution set of (1) is
nonempty. For presentation convenience, let xn denote a theore-
tical solution (or termed, root) of nonlinear equation (1). It is worth
pointing out that considerable attention has been focused to solve
nonlinear equation (1) both analytically and numerically. For
example, several iterative numerical methods have been developed
using quite different techniques such as Taylor's series, quadrature
formulas, homotopy, interpolation, decomposition and its various
modification [6–11].

In recent years, due to the in-depth research in neural networks,
various dynamic and analog solvers in the form of neural dynamics
and recurrent neural networks have been developed, investigated
and implemented on specific architectures [12–14]. In addition, as a

software and hardware implementable approach, neural dynamics
has widely arisen in scientific computation and optimization, draw-
ing extensive interest and investigation of researchers [15–19].
Compared with conventional numerical algorithms, it has several
potential advantages in real-time applications (e.g., parallel proces-
sing, distributed storage, self-adaptation, and high fault tolerance),
and has been taken into account as one powerful computational
scheme for online solution of nonlinear equation problems. How-
ever, most reported computational schemes are related to gradient-
based methods and/or designed theoretically for solving time-
invariant (or termed, static) problems [20–23]. Specifically, to solve
nonlinear equation (1), we can design a classic gradient-based
dynamics (GD) as follows [20–23].

Firstly, we can define a square-based energy function EðxÞ ¼
f 2ðxÞ=2. Evidently, its minimum point can be achieved if and only if
the solution x of nonlinear equation (1) is equal to theoretical
solution xn. Secondly, a scheme can be designed to evolve along
the negative gradient descent direction of the energy function until
the minimum is reached. That is �∂EðtÞ=∂x¼ � f 0ðxÞf ðxÞ. Finally, a
typical learning rule based on the negative gradient generates the GD
model as _xðtÞ ¼ �γ∂EðtÞ=∂x¼ �γf 0ðxÞf ðxÞ, where design parameter
γ40 is used to adjust the convergence rate of the GD model, and
x(t), starting from an initial state xð0ÞAR, denotes the neural state
corresponding to the theoretical solution xn.

Recently, a special class of neural dynamics (termed Zhang
dynamics, ZD) was originally proposed by Zhang et al. for solving
online time-varying problems [20–26], which can also be applied
to online solution of time-invariant problem. In [20,21], the original
ZD (OZD) model has been generalized, developed, analyzed and
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compared for online solution of nonlinear equations. Different from
the GD model, the OZD has been elegantly introduced by defining
an indefinite error-monitoring function. By comparing the GDmodel
and the OZD model in [20,21], we can draw a conclusion that, for
the situation of a simple root, the GD model and the OZD model
can effectively converge to the theoretical simple root; and, for
the situation of a multiple root, with the increase of the order of the
multiple root, the neural state of the ZD model can still converge
well to such a theoretical root; in contrast, the GD model more
probably yields wrong (or approximate) solutions. In addition, the
OZD model has been proven to converge to the theoretical solution
ideally when time goes to infinity. However, the OZD model cannot
converge to the desired value within finite time, which may limit its
applications in real-time processing. Motivated by further improving
the efficacy of the OZD model, an improved ZD (IZD) model is
developed for online nonlinear equation solving. More importantly,
the upper bound of the convergence time for the IZD model is
derived analytically via the Lyapunov theory. To the best of authors'
knowledge, this is the first time to provide such an IZD model for
solving nonlinear equation problem and its finite-time neural
solution. Before ending this section, it is worth summarizing and
listing the main contributions and novelties of this paper as follows.

� For the first time, a novel finite-time convergent neural
dynamics (i.e., the IZD model) together with a specially-
constructed activation function is proposed and exploited for
finding the root of nonlinear equation (1) in real-time.

� Our proposed IZD model can outperform the existing neural
dynamical models, e.g., the conventional GD model and the
recently-proposed OZD model, with superior convergence per-
formance (i.e., finite-time convergence) achieved.

� Two illustrative examples are provided and the computer-
simulation results can verify the effectiveness and superiority
of our proposed IZD model for nonlinear equation solving in
real-time.

2. Model formulation

To facilitate the convergence analysis and to lay a basis for
further discussion, the following two dynamical models are first
presented in this section.

2.1. Original Zhang dynamics (OZD)

To solving online nonlinear equation (1), following Zhang et al.'
design method [24–26], we can develop a neural dynamics
expressed as an implicit dynamic system (i.e., the original Zhang
dynamics, OZD).

Firstly, to monitor the nonlinear-equation solving process, an
indefinite error function e(t) is defined below, instead of a square-
based energy function associated with the aforementioned GD
model:

eðtÞ ¼ f ðxÞ: ð2Þ
Then, the ZD design formula is adopted such that e(t) converges

to zero as time t goes on. That is

deðtÞ
dt

¼ �γeðtÞ: ð3Þ

Now, expanding the above design formula (3) and in view of
_eðtÞ ¼ f 0ðxÞ _xðtÞ, we can obtain the following implicit dynamic
equation of the OZD model:

f 0ðxÞ _xðtÞ ¼ �γf ðxÞ; ð4Þ
where xðtÞAR, f 0ðxÞ and γ40AR are defined as the before.

2.2. Improved Zhang dynamics (IZD)

In this subsection, an improved Zhang dynamics (IZD) is
proposed for finding the root of nonlinear equation (1) by adding
a specially-constructed activation function [27–29] (i.e., the sign-
bi-power function or the Li function):

f 0ðxÞ _xðtÞ ¼ �γsbp f ðxÞð Þ; ð5Þ
where sbpð�Þ : R-R denotes a specially-constructed nonlinear
mapping of neural dynamics and is defined as

spbðyÞ ¼ sgnrðyÞþsgn1=rðyÞ; ð6Þ
with parameter rAð0;1Þ and sgnrð�Þ defined as

sgnrðyÞ ¼
jyjr if y40;
0 if y¼ 0;
�jyjr if yo0;

8><
>:

where yAR and jyj denotes the absolute value of y.

2.3. Models comparison

While the above subsections present two different models for
real-time nonlinear equation solving, in this subsection, the fol-
lowing details are given for comparing the OZD model (4) and the
IZD model (5), as well as the GD model.

� A specially-constructed nonlinear function is exploited in the
IZD model (5), which makes its form totally different from these
of the GD model and the OZD model (4).

� The design of OZD model (4) and the IZD model (5) is based on
the elimination of an indefinite error function. By contrast, the
design of the GD model is based on the elimination of a square-
based positive energy function.

� Similar to the OZD model (4), the IZD model (5) is depicted in
implicit dynamics that is better consistent with the systems in
practice and in nature. By contrast, the GD model is depicted in
an explicit dynamics that is usually associated with classic
Hopfield-type recurrent neural networks.

� It can be theoretically proved that the IZD model (5) achieves
superior finite-time convergence performance in comparison
with the GD model and the OZD model (4). In addition, for the
case of a multiple root, with the increase of the order of the
multiple root, the neural state of OZD model (4) and IZD model
(5) can still converge well to such a theoretical root. In contrast,
the GD model more probably yields wrong (or approximate)
solutions [20,21].

Before ending this subsection, following the above third point,
we would like to mention that the implicit dynamical systems
frequently arise in analog electronic circuits and systems according
to Kirchhoff's rules [20,21]. In addition, implicit dynamical systems
have greater abilities in representing dynamical systems because of
preserving physical parameters in the coefficient matrices, e.g.,
f 0ðxÞ on the left-hand side of IZD model (5) and OZD model (4).
Besides, the implicit systems could be mathematically transformed
to explicit systems if needed. In this sense, owing to the advantages
of implicit systems, our IZD model (5) and OZD model (4) can be
much superior to the GD model in the form of explicit systems.

3. Convergence analysis

In this section, the finite-time convergent performance of IZD
model (5) is investigated. Before that, the lemma [20,21] about
global convergence of OZD model (4) for solving nonlinear equa-
tion is presented for comparative purpose.
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