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a b s t r a c t

Metric learning has attracted a lot of interest over the last decade, but the generalization ability of such
methods has not been thoroughly studied. In this paper, we introduce an adaptation of the notion of
algorithmic robustness (previously introduced by Xu and Mannor) that can be used to derive general-
ization bounds for metric learning. We further show that a weak notion of robustness is in fact a
necessary and sufficient condition for a metric learning algorithm to generalize. To illustrate the
applicability of the proposed framework, we derive generalization results for a large family of existing
metric learning algorithms, including some sparse formulations that are not covered by the previous
results.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Metric learning consists in automatically adjusting a distance
or similarity function using training examples. The resulting
metric is tailored to the problem of interest and can lead to
dramatic improvement in classification, clustering or ranking
performance. For this reason, metric learning has attracted a lot
of interest for the past decade (see [1,2] for recent surveys).
Existing approaches rely on the principle that pairs of examples
with the same (resp. different) labels should be close to each other
(resp. far away) under a good metric. Learning thus generally
consists in finding the best parameters of the metric function
given a set of labeled pairs.2 Many methods focus on learning a
Mahalanobis distance, which is parameterized by a positive semi-
definite (PSD) matrix and can be seen as finding a linear projection
of the data to a space where the Euclidean distance performs well
on the training pairs (see for instance [3–9]). More flexible metrics
have also been considered, such as similarity functions without
PSD constraint [10–12]. The resulting distance or similarity is used
to improve the performance of a metric-based algorithm such as
k-nearest neighbors [5,7], linear separators [12,13], K-Means
clustering [3] or ranking [9].

Despite the practical success of metric learning, little work has
gone into a formal analysis of the generalization ability of the

resulting metrics on unseen data. The main reason for this lack of
results is that metric learning violates the common assumption of
independent and identically distributed (IID) data. Indeed, the
training pairs are generally given by an expert and/or extracted from
a sample of individual instances, by considering all possible pairs or
only a subset based for instance on the nearest or farthest neighbors
of each example, some criterion of diversity [14] or a random sample.
Online learning algorithms [15,6,10] can still offer some guarantees in
this setting, but only in the form of regret bounds assessing the
deviation between the cumulative loss suffered by the online
algorithm and the loss induced by the best hypothesis that can be
chosen in hindsight. These may be converted into proper general-
ization bounds under restrictive assumptions [16]. Apart from these
results on online metric learning, very few papers have looked at the
generalization ability of batch methods. The approach of Bian and
Tao [17,18] uses a statistical analysis to give generalization guarantees
for loss minimization approaches, but their results rely on restrictive
assumptions on the distribution of the examples and do not take into
account any regularization on the metric. Jin et al. [19] adapted the
framework of uniform stability [20] to regularized metric learning.
However, their approach is based on a Frobenius norm regularizer
and cannot be applied to other type of regularization, in particular
sparsity-inducing norms [21] that are used in many recent metric
learning approaches [22,8,23,9]. Independently and in parallel to our
work,3 Cao et al. [25] proposed a framework based on Rademacher
analysis, which is general but rather complex and limited to pair
constraints.

In this paper, we propose to study the generalization ability of
metric learning algorithms according to a notion of algorithmic
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robustness. This framework, introduced by Xu et al. [26,27], allows
one to derive generalization bounds when the variation in the loss
associated with two “close” training and testing examples is
bounded. The notion of closeness relies on a partition of the input
space into different regions such that two examples in the same
region are considered close. Robustness has been successfully used
to derive generalization bounds in the classic supervised learning
setting, with results for SVM, LASSO, etc. We propose here to adapt
algorithmic robustness to metric learning. We show that, in this
context, the problem of non-IIDness of the training pairs/triplets
can be worked around by simply assuming that they are built from
an IID sample of labeled examples. Moreover, following [27], we
provide a notion of weak robustness that is necessary and
sufficient for metric learning algorithms to generalize well, con-
firming that robustness is a fundamental property. We illustrate
the applicability of the proposed framework by deriving general-
ization bounds, using very few approach-specific arguments, for a
family of problems that is larger than what is considered in
previous work [17–19,25]. In particular, results apply to a vast
choice of regularizers, without any assumption on the distribution
of the examples and using a simple proof technique.

The rest of the paper is organized as follows. We introduce some
preliminaries and notations in Section 2. Our notion of algorithmic
robustness for metric learning is presented in Section 3. The
necessity and sufficiency of weak robustness is shown in Section 4.
Section 5 illustrates the wide applicability of our framework by
deriving bounds for existing metric learning formulations. Section 6
discusses the merits and limitations of the proposed analysis
compared to related work, and we conclude in Section 7.

2. Preliminaries

2.1. Notations

Let X be the instance space, Y be a finite label set and let
Z ¼ X � Y . In the following, z¼ ðx; yÞAZ means xAX and yAY . Let
μ be an unknown probability distribution over Z. We assume that X
is a compact convex metric space w.r.t. a norm J � J such that
X �Rd, thus there exists a constant R such that 8xAX, JxJrR. A
similarity or distance function is a pairwise function f : X � X-R. In
the following, we use the generic term metric to refer to either a
similarity or a distance function. We denote by s a labeled training
sample consisting of n training instances ðs1;…; snÞ drawn IID from
μ. The sample of all possible pairs built from s is denoted by ps such
that ps ¼ fðs1; s1Þ;…; ðs1; snÞ;…; ðsn; snÞg. A metric learning algorithm
A takes as input a finite set of pairs from ðZ � ZÞn and outputs a
metric. We denote by Aps the metric learned by an algorithm A
from a sample ps of pairs. For any pair of labeled examples ðz; z0Þ and
any metric f, we associate a loss function lðf ; z; z0Þ which depends on
the examples and their labels. This loss is assumed to be non-
negative and uniformly bounded by a constant B. We define the
generalization loss (or true loss) over μ as

Lðf Þ ¼ Ez;z0 � μlðf ; z; z0Þ;
and the empirical loss over the sample ps as

lempðf Þ ¼
1
n2 ∑

n

i ¼ 1
∑
n

j ¼ 1
lðf ; si; sjÞ ¼

1
n2 ∑

ðsi ;sjÞAps

lðf ; si; sjÞ:

We are interested in bounding the deviation between lemp(f)
and Lðf Þ.

2.2. Algorithmic robustness in classic supervised learning

The notion of algorithmic robustness, introduced by Xu and
Mannor [26,27] in the context of classic supervised learning, is

based on the deviation between the loss associated with two
training and testing instances that are “close”. Formally, an
algorithm is said ðK ; ϵðsÞÞ-robust if there exists a partition of the
space Z ¼ X � Y into K disjoint subsets such that for every training
and testing instances belonging to the same region of the parti-
tion, the variation in their associated loss is bounded by a term
ϵðsÞ. From this definition, the authors have proved a bound for the
difference between the empirical loss and the true loss that has
the form

ϵðsÞþB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K ln 2þ2 ln 1=δ

n

r
; ð1Þ

with probability 1�δ. This bound depends on K and ϵðsÞ. The latter
should tend to zero as K increases to ensure that (1) also goes to
zero when n-1.4 When considering metric spaces, the partition
of Z can be obtained by the notion of covering number [28].

Definition 1. For a metric space ðX;ρÞ, and T � X, we say that
T̂ � T is a γ-cover of T, if 8 tAT , ( t̂A T̂ such that ρðt; t0Þrγ. The
γ-covering number of T is

N ðγ; T ;ρÞ ¼minfjT̂ j : T̂ is a γ� cover of Tg:

When X is a compact convex space, for any γ40, the quantity
N ðγ;X;ρÞ is finite leading to a finite cover. If we consider the space
Z, note that the label set can be partitioned into jYj sets. Thus, Z
can be partitioned into jYjN ðγ;X;ρÞ subsets such that if two
instances z1 ¼ ðx1; y1Þ, z2 ¼ ðx2; y2Þ belong to the same subset, then
y1 ¼ y1 and ρðx1; x2Þrγ.

3. Robustness and generalization for metric learning

We present here our adaptation of robustness to metric
learning. The idea is to use the partition of Z at the pair level: if
a new test pair of examples is close to a training pair, then the loss
value for each pair must be close. Two pairs are close when each
instance of the first pair fall into the same subset of the partition of
Z as the corresponding instance of the other pair, as shown in
Fig. 1. A metric learning algorithm with this property is said
robust. This notion is formalized as follows.

Definition 2. An algorithm A is ðK; ϵð�ÞÞ robust for KAN and
ϵð�Þ : ðZ � ZÞn-R if Z can be partitioned into K disjoints sets,
denoted by fCigKi ¼ 1, such that for all sample sAZn and the pair set
pðsÞ associated to this sample, the following holds:

8ðs1; s2ÞApðsÞ; 8z1; z2AZ; 8 i; j¼ 1;…;K:

if s1; z1ACi and s2; z2ACj then

jlðAps ; s1; s2Þ� lðAps ; z1; z2ÞjrϵðpsÞ: ð2Þ

K and ϵð�Þ quantify the robustness of the algorithm and depend
on the training sample. The property of robustness is required for
every training pair of the sample; we will later see that this
property can be relaxed.

Note that this definition of robustness can be easily extended to
triplet based metric learning algorithms. Instead of considering all
the pairs ps from an IID sample s, we take the admissible triplet set
trips of s such that ðs1; s2; s3ÞA trips means s1 and s2 share the same
label while s1 and s3 have different ones, with the interpretation
that s1 must be more similar to s2 than to s3. The robustness
property can then be expressed as follows: 8ðs1; s2; s3ÞA trips; 8z1;

4 This point will be made clear by the examples provided in Section 5.
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