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ABSTRACT

Spiking neural networks (SNNs) have been highly successful in spatiotemporal pattern recognition. As
one of the most efficient supervised learning algorithms in spike sequences learning, the perceptron-
based spiking neuron learning rule (PBSNLR) still has a relatively high computational complexity, which
is difficult to use in a real-time system. In this paper, a novel method is presented to improve PBSNLR's
efficiency without reducing its accuracy, and this method is applied to solve user authentication problem
in real time. In our method, a user's behavioral biometric of sliding dynamic and finger pressure are
selected as spatiotemporal features to recognize the user's identity. The temporal feature is obtained by
the time coding of SNNs and the spatial feature is represented by the neurons' relative positions.
Comprehensive experimental results demonstrate that our improved algorithm outperforms the
traditional PBSNLR in terms of efficiency and exhibits excellent performance when identifying users of
touch screen devices.

Spatiotemporal pattern recognition

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

As the third generation of artificial neural networks, spiking
neural networks (SNNs) have been successfully applied to various
domains such as human action recognition [1,2], image processing
[3,4], path planning [5], and sound source localization [6]. The
successful utilization of SNNs in these domains stems from their
biological approach to processing information using temporal
coding rather than rate coding [7], which offers a new way to
represent information and allows the use of enormous computing
power to process information [8].

To further explore the computational ability of SNNs, many
advanced learning algorithms have been recently introduced in
supervised learning. These algorithms can be categorized into two
types: learning with single spike and learning with multi-spike
sequences [9-11]. The former contains numerous methods [12,13]
[14] among which SpikeProp [12] is the most typical method,
combining a BP algorithm with SNNs to achieve supervised
learning. Although single spike learning methods exhibit good
performance when classifying problems, learning algorithms with
multi-spikes increase network capacity and computing power.
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The first multi-spike sequences learning algorithm is ReSuMe
[15], which attains sequence learning, classification, and spike
shifting using the Widrow-Hoff rule and spike-time-dependent
plasticity (STDP). The ReSuMe was improved by Sporea [16]. After
that, the perceptron-based spiking neuron learning rule (PBSNLR)
was proposed by Yan [17]. It transforms the supervised learning
task into a classification problem that can be solved using the
perceptron learning rule. Although SNNs have numerous efficient
learning methods, such as the PBSNLR, and can be successfully
applied to various applications, their efficiencies are not high
enough to meet the requirements of real-time applications. For
this study, we improve the PBSNLR using dynamic learning rates
and a dynamic selection method of training samples. Using these
strategies, the PBSNLR's efficiency improves drastically. Our efforts
are illustrated in the following sections.

We apply the improved algorithm to a user authentication system
to demonstrate its high efficiency. This user authentication system is
employed in real-time touch screen devices such as smartphones or
PAD. In contrast to one-time unlock protection, which suffers from
several limitations such as passwords being stolen, lost, or acquired
by others [18], our real-time user authentication method protects
user information all the time, even when devices are in use. A user's
behavioral biometric of sliding motions and pressure are used as
features in our spiking neural classifier. It has been illustrated that
user authentication systems with biometric-based features possess
more advantages over other security features, because they cannot
be stolen or forgotten [19]. Two main contributions are discussed in
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this paper: (1) The efficiency of the PBSNLR algorithm is improved to
promote the learning efficiency of the supervised learning of SNNs.
(2) The user authentication system is presented by a spiking neural
classifier with the developed PBSNLR algorithm to meet real-time
requirements.

The rest of this paper is organized as follows: Section 2 illustrates
the manner in which the efficiency of the PBSNLR algorithm is
improved. In Section 3, several numerical experiments are conducted
to investigate learning performance of our improved algorithm
compared with the traditional PBSNLR. The real time authentication
system is proposed in Section 4, with its recognition results shown
and analyzed in Section 5. Section 6 states conclusions and future
research.

2. PBSNLR algorithm with dynamic parameters
2.1. PBSNLR algorithm

Supervised learning in time-encoded SNNs attempts to estab-
lish a link between input and target output sequences. The PBSNLR
transforms this task into a classification problem using the
perceptron learning rule [17] with the sample defined as follows.

All target time points are regarded as positive samples and all
no-target time points are negative samples. These negative sam-
ples are selected by a uniform distribution on the neurons'
running time (removing target time points). Positive samples are
misclassified if there is no spike at that time, and conversely, a
negative sample is misclassified if the voltage of output neuron at
that time exceeds threshold [17]. All of these misclassified samples
are trained using the perceptron learning rule in the following
equations:

Win-1)—aU; ifd;=0 and a;=1,
Win)={ Win—-1)+aU; ifd,=1 and a =0, 1)
W,-(n—l) if d[:at,

where Wy(n) is the weight of the ith synapse at generation n, a is
the learning rate, and U is the transmit voltage of the synapse at
time t. d; = 0 indicates that time ¢ is not the target time, and a; =0
means that the voltage of the output neuron is below threshold at
time t.

2.2. The improved PBSNLR algorithm

The PBSNLR algorithm has been shown to be effective in
classification problems, however, it still suffers from two
limitations:

(1) The learning process is instructed by only one learning
parameter a, and after its assignment, it is fixed in a learning
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process. Consequently, weight changes drastically or slowly for
both negative and positive samples in every learning period,
which leads to low learning efficiency. Employing only one fixed
learning parameter here is not an optimal option because it cannot
detect surrounding environment to determine its proper value to
complete learning efficiently.

(2) The method that introduced in PBSNLR to select negative
samples [17] is inserting time points uniformly and detecting their
voltage. Since the continuity of the voltage function at most time
(except when a spike is emitted), this sample selective method is
easy to cause the situation that numerous misclassified negative
samples clustered, which is shown in Fig. 1(a). While weight
modification of so much clustered negative samples will affect
the voltage of their next nearest positive sample significantly, and
then lead to accuracy oscillation. Fig. 1 shows this situation.

Here we propose two strategies to improve the PBSNLR. First,
dynamic learning parameters are applied. The time distance item
D, is introduced, which is calculated using Eq. (3). It expresses the
time distance of the current negative sample t and its nearest
positive sample tz with tg >t (for example, in Fig. 1(a), the
distance between t; and its next nearest positive sample t; is
denoted by Dy, ). Weights modification at misclassified negative
points are calculated according to the following equations:

AWneg =ﬂ1DtUt, ()
with
D= llt—tqll. t=0,A4At,24t,...T. 3

Using this time distance parameter, weights change slowly if
negative sample t is close to its next positive sample tg, and
conversely, weights vary drastically. This dynamic parameter can
adjust its value according to the learning requirements, and
mitigates the interference of the negative samples' training with
the positive to improves learning efficiency.

Similarly, to decrease the impact of the positive points' weight
modification with the negative, a dynamic parameter D, is presented
for each misclassified positive sample tg. It is expressed by Eq. (5) to
denote the voltage difference of threshold & and voltage at time tg,
with U, calculated using the simplified spike response model
(SRMp) of spiking neural networks (see appendix for details of
models). D, can avoid excessive weight modification in time ¢ty if
its voltage is close to threshold. Weights at misclassified positive
samples are adjusted according to the following equations:

AWposi :ﬂzDvUt, (4)
with

v =119—Ug, Il (5)
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Fig. 1. Training with traditional PBSNLR. (a) Voltage of the output neuron before training. ti,t>,t3 are no-target time but their voltage exceeds threshold, then they are all
chosen as misclassified negative samples. t, is a positive sample which is classified correctly because its voltage exceeds threshold. (b) Voltage of the output neuron after
training. Clearly, the training of negative samples ty,t,,t3 leads to misclassification of t4. Conversely, the strengthened weights at t; with a large « also lead to misclassification

of negative samples.
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