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a b s t r a c t

This paper addresses the problem of exponential synchronization for a class of complex spatio-temporal
networks with space-varying coefficients, where the dynamics of nodes are described by coupled partial
differential equations (PDEs). The goal of this research is to design distributed proportional-spatial
derivative (P-sD) state feedback controllers to ensure exponential synchronization of the complex
spatio-temporal network. Using Lyapunov's direct method, the problem of exponential synchronization
of the complex spatio-temporal network is formulated as the feasibility problem of spatial differential
linear matrix inequality (SDLMI) in space. The feasible solutions to this SDLMI in space can be
approximately derived via the standard finite difference method and the linear matrix inequality
(LMI) optimization technique. Finally, a numerical example is presented to demonstrate the effectiveness
of the proposed design method.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Complex dynamical networks can be used to describe many
large-scale systems in many aspects such as nature and human
societies, where nodes and edges of the network represent
individuals in the system and the connection among them,
respectively. Typical examples involve biological neural networks,
ecosystems, electrical power grids, and the internet. Since their
wide applications, there has been rapidly increasing interests in
the studying of various complex dynamical networks in the past
decades [1–3].

Ever since the discovery of the synchronization of two pendu-
lum clocks by Christian Huygens [4,5], synchronization, a typical
collective behavior and a basic motion in nature, has been studied
for several centuries. Since then, synchronization has received a
great attention for its potential applications in many fields like in
secure communications, biological systems, chemical processes,
and so on [6,7], and therefore a great number of studies have been
devoted to the analysis of synchronization of various complex
networks [8–10]. For the case of when one complex network
cannot synchronize by itself, control design is desired to achieve
the synchronization of the complex network. In this case, many
effective design methods have been reported in [6–16]. However,

the dynamical behavior of the networks in these results [6–16] is
assumed to be described by ordinary differential equations (ODEs)
or delay differential equations (DDEs).

In practice, the node dynamics in most complex networks like
biological systems [17] is spatio-temporal in nature so that its behavior
must depend on time as well as spatial position and therefore could be
described by partial differential equations (PDEs). Many researchers
have paid attention to the study of synchronization of complex PDE
networks over the past decades, in which many analysis and design
approaches have been proposed [18–26]. These design approaches can
be classified into two types: “reduce-then-design” [18–20] and “design-
then-reduce” [21–26]. The former one initially applies the spatial
discretization techniques like finite difference method to complex
PDE networks to obtain an approximate model consisting of complex
ODE networks in time. Although it is easy to apply various concepts of
finite-dimensional control theory and techniques for the control
design of complex PDE networks, a potential drawback of the
reduce-then-design approach is that the order of the resulting com-
plex ODE networks may be very large for yielding the desired degree
of approximation, resulting in complicated controller design and high
dimensionality controllers different from the reduce-then-design
approach, the design-then-make the best use of the merits of the
original PDE model for the controller design and the resulting infinite-
dimensional control solution is then lumped for implementation
purpose. Hence, the research on the synchronization for complex
PDE networks based on PDE model is very active [21–26]. However,
the papers [21–26] dealt with the networks with space-invariant
coefficients.
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Motivated by the above analysis, this paper addresses the pro-
blem of exponential synchronization for a class of linear complex
spatio-temporal networks with space-varying coefficients, where
each nodes' dynamics is modeled by coupled parabolic PDEs.
Distributed proportional-spatial derivative (P-sD) are proposed to
ensure the exponential synchronization of the complex PDE net-
work. By using Lyapunov's direct method, the main result of this
paper is presented in term of spatial differential linear matrix
inequality (SDLMI) in space as a result of the existing space-
varying coefficients in the complex spatio-temporal network. It
has been pointed out in [27] that this feasibility problem can be
approximated by the finite difference method and the standard LMI
optimization [28,29]. A numerical example is presented to demon-
strate the effectiveness of the proposed method.

The main contribution and novelty of this paper can be summar-
ized as follows: (i) The problem of a class of linear complex spa-
tio-temporal networks with space-varying coefficients is formulated,
which is actually modeled by an array of coupled PDEs. (ii) An SDLMI
based approach to the distributed P-sD controller design of expo-
nential synchronization is developed via Lyapunov's direct method,
the technique of integration by parts and the Kronecker product for
matrices for the complex spatio-temporal network with space-var-
ying coefficients.

The remainder of this paper is organized as follows. The
problem formulation and preliminaries are given in Section 2.
Section 3 presents a distributed P-sD control design for exponen-
tial synchronization of the complex PDE network in terms of
SDLMI. An example to illustrate the effectiveness of the proposed
method is presented in Section 4 and Section 5 offers some
concluding remarks.

Notations: The following notations will be used throughout this
paper. ℜ, ℜn and ℜm�n denote the set of all real numbers,
n-dimensional Euclidean space and the set of all m� n matrices,
respectively. jjU jj and 〈U ; U 〉ℜn denote the Euclidean norm and
inner product for vectors, respectively. � means the Kronecker
product for matrices. Identity matrix, of appropriate dimensions,
will be denoted by I. For a symmetric matrix R, R40 and Ro0
respectively means that it is positive definite and negative definite.
λminðU Þ and λmaxðU Þ stand for the minimum and maximum eigen-
values of a square matrix, respectively. ℒ2ð½l1; l2�;ℜnÞ is a Hilbert
space of n-dimensional square integrable vector functions
ωðxÞAℜn, xA ½l1; l2� �ℜ with the inner product and norm:

〈ω1; ω2〉¼
Z l2

l1
〈ω1ðxÞ; ω2ðxÞ〉ℜndx and jjω1jj2 ¼ 〈ω1; ω1〉

1=2;

where ω1, ω2Aℒ2ð½l1; l2�;ℜnÞ. The superscript “T” is used for the
transpose of a vector or a matrix. The symbol “n” is used as an
ellipsis in matrix expressions that are induced by symmetry, e.g.,

Rþ½MþNþn� X
n Y

� �
9

Rþ½MþNþMT þNT � X
XT Y

" #
:

2. Preliminaries and problem formulation

Consider a class of complex spatio-temporal networks
described by coupled parabolic PDEs with space-varying coeffi-
cients of the following form:

∂yiðx; tÞ
∂t ¼ ∂

∂x Θ1ðxÞ∂yiðx; tÞ∂x

� �
þΘ2ðxÞ∂yiðx; tÞ∂x þAðxÞyiðx; tÞþc ∑

N

j ¼ 1
gijðxÞyjðx; tÞ

þHðxÞuiðx; tÞ
∂yiðx; tÞ

∂x

���
x ¼ l1

¼ ∂yiðx; tÞ
∂x

���
x ¼ l2

¼ 0

yiðx; 0Þ ¼ yi; 0ðxÞ; iAf1; 2; …; Ng

8>>>>>>>><
>>>>>>>>:

ð1Þ

where yiðx; tÞAℜn and uiðx; tÞAℜm, iAf1; 2; …; Ng, are the state
and distributed control input of the i-th node, respectively.
Θ1ðxÞAℜn�n, Θ2ðxÞAℜn�n, AðxÞAℜn�n, HðxÞAℜn�m, xA ½l1; l2� are
known matrix functions of x, xA ½l1; l2�. c is a known scalar
describing the coupling strength. xA ½l1; l2� �ℜ and tA ½0; 1Þ are
the spatial position and time, respectively. yi;0ðxÞ means the initial
value of the i-th node. GðxÞ ¼ ðgijðxÞÞN�N , xA ½l1; l2� is the coupling
configuration matrix function of x, which represents the topolo-
gical structure of the complex spatio-temporal network, where
giiðxÞ ¼ �∑N

j ¼ 1;ja igijðxÞ, i; jAf1; 2; …; Ng. Moreover, GðxÞ is not
required to be symmetric or irreduciblein this paper.

Assume that there is an isolated node sðx; tÞ satisfies
∂sðx; tÞ

∂t ¼ ∂
∂x Θ1ðxÞ∂sðx; tÞ∂x

� �
þΘ2ðxÞ∂sðx; tÞ∂x þAðxÞsðx; tÞ

∂sðx; tÞ
∂x

���
x ¼ l1

¼ ∂sðx; tÞ
∂x

���
x ¼ l2

¼ 0

sðx; 0Þ ¼ s0ðxÞ

8>>>><
>>>>:

ð2Þ

Define the synchronization error of the i-th node as

eiðx; tÞ9yiðx; tÞ�sðx; tÞ: ð3Þ
Hence the synchronization error system of the complex PDE

network can be represented by

∂eiðx; tÞ
∂t ¼ ∂

∂x Θ1ðxÞ∂eiðx; tÞ∂x

� �
þΘ2ðxÞ∂eiðx; tÞ∂x þAðxÞeiðx; tÞ

þc ∑
N

j ¼ 1
gijðxÞejðx; tÞþHðxÞuiðx; tÞ

∂eiðx; tÞ
∂x

���
x ¼ l1

¼ ∂eiðx; tÞ
∂x

���
x ¼ l2

¼ 0

eiðx; 0Þ ¼ ei;0ðxÞ; iAf1; 2; …; Ng

8>>>>>>>>><
>>>>>>>>>:

ð4Þ

where

ei;0ðxÞ9yi;0ðxÞ�s0ðxÞ:

To achieve the synchronization of the complex PDE network (1),
this paper considers the following identical distributed P-sD feed-
back controllers [27,31,32]:

uiðx; tÞ ¼KðxÞeiðx; tÞþLðxÞ∂eiðx; tÞ
∂x

; iA 1; 2; …; Nf g ð5Þ

in which KðxÞ and LðxÞ, xA ½l1; l2� are real continuous m� n matrix
functions to be determined. The controller structure in this paper is
shown in Fig. 1, where the notation “∂=∂x” represents a first-order
spatial differentiator.

Remark 1. It must be pointed out that the implementation of the
distributed P-sD feedback controllers (5) needs, which is normally
recognized as a critical drawback. However, with recent advances
in the filed of technological developments especially in micro-
electro-mechanical systems, it has become feasible to manufacture
large arrays of micro-sensors and actuators with integrated
control circuitry, which can help the controllers (5) to be imple-
mented in some practical applications (see [27,30–32]). The signal
ð∂eiðx; tÞÞ=∂x in the controllers (5) can be obtained via the finite
difference method. Additionally, it has been pointed out in

Feedback 
controller (5)

Process

Off-line controller design

( , )ei x t( , )ui x t

Fig. 1. The structure of distributed P-sD state-feedback controllers.
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