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a b s t r a c t

This paper presents a simple but effective method for face recognition, named nearest orthogonal matrix
representation (NOMR). Specifically, the specific individual subspace of each image is estimated and
represented uniquely by the sum of a set of basis matrices generated via singular value decomposition
(SVD), i.e. the nearest orthogonal matrix (NOM) of original image. Then, the nearest neighbor criterion is
introduced for recognition. Compared with the current specific individual subspace based methods (e.g.
the sparse representation based classifier, the linear regression based classifier and so on), the proposed
NOMR is more robust for alleviating the effect of illumination and heterogeneous (e.g. sketch face
recognition), and more intuitive and powerful for handling the small sample size problem. To evaluate
the performance of the proposed method, a series of experiments were performed on several face
databases: Extended Yale B, CMU-PIE, FRGCv2, AR and CUHK Face Sketch database (CUFS). Experimental
results demonstrate that the proposed method achieves encouraging performance compared with the
state-of-the-art methods.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In past few decades, face recognition has become a popular
area of research in computer vision and one of the most successful
applications of image analysis and understanding. So far, the state-
of-the-art recognition technologies can strike high accuracy under
controlled environment, such as frontal faces with comfortable
lighting conditions [1]. However, most existing face recognition
technologies are still far from the perfection in uncontrolled cases
of larger illumination, occlusion, disguise etc. [2]

Recently, reconstruction-representation-based methods, utiliz-
ing known samples as the basis to linearly rebuild the non-ideal
query sample to eliminate the obstruction, has aroused widespread
concerns in the field of robust face recognition. Derived from sparse
representation and robust principle component analysis (RPCA) [3],
an important relevant work named sparse representation based
classifier (SRC) was firstly proposed in [4], where the rarely known
samples are selected by L1-optimizer to reconstruct the query
sample. With huge computational cost, SRC shows strong ability
in dealing with sparse random pixel corruption and block occlusion.
Relatively low-cost, Shi et al. advocated the L2-optimizer based

regression method selecting all known samples to reconstruct the
query sample in [5]. Subsequently, Zhang et al. analyzed the
working principle of SRC and asserted the importance of collabora-
tive representation strategy than L1-norm based sparsity constraint
[6]. Thus, a collaborative representation based classifier (CRC) was
proposed with ridge regression (L2-norm).

On the other hand, above representation residuals are usually
measured by L1-norm or L2-norm corresponding to Gaussian or
Laplacian distribution respectively. However, the distribution of
representation residuals is really complicated to suppress the
performance of above mentioned methods [7,8]. To this end, Yang
et al. borrowed the idea of robust regression and proposed a
regularized robust coding method [7,8]. He et al. further presented
a correntropy based sparse representation (CESR) algorithm using
the correntropy induced robust error metric [9,10].

Actually, the strategy of seeking the best linear representation
in known samples, i.e. minimum linear reconstruction representa-
tion residuals, can be traced back to the nearest neighbor line
(NFL) [11], which aims to extend the capacity of prototype features
by computing a linear function to interpolate and extrapolate each
sample pair in the same class. Chien and Wu further extended NFL
and proposed the nearest feature plane (NFP) and the nearest
feature space (NFS) methods for pattern classification [12]. As a
special case of NFS, Naseem proposed linear regression based
classifier (LRC) using the whole class samples to construct the
linear prototype [13].
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Essentially, all successful application methods mentioned
above are underpinned by the following assumption [4–16]:

Assumption 1. Specific individual subspace assumption: samples
from a specific object class are known to lie in a specific linear
subspace, i.e. any test imagey from a specific class i has a specific
individual subspace spanned by Ai ¼ ½ai1; ai2; :::; aiN � such that

y¼ Aiw: ð1Þ
In SRC and CRC, the specific individual subspace of query sample is
achieved by the linear regression (L1-optimizer or L2-optimizer).
While the specific individual subspace of NFL, NFP, NFS and LRC is
directly spanned by the known samples in one class. Despite
different strategies, the specific individual subspace of all above
methods is composed of the known samples. Thus, to guarantee
sufficient representation of a query sample, relevant methods
depend on the holding of following assumption heavily:

Assumption 2. Large sample size assumption: there are sufficient
known samples for each class, such that any query sample can be
sufficiently represented using only the known samples in the
same class.

However, Assumption 2 does not really hold well. This leads to
larger representation residuals and lower recognition rates of
above mentioned methods. For example, none of the above
mentioned methods can handle the case of the single image per
person problem well. Towards this end, a simple but effective
basis-acquisition technique was proposed, coined nearest ortho-
gonal matrix representation (NOMR) explicitly utilizing Assum-
ption 1 rather than implicitly using known samples. Specifically,
the specific individual subspace of each image is firstly estimated
and represented uniquely by the sum of a set of basis matrices
generated via singular value decomposition (SVD), the nearest
orthogonal matrix (NOM) of original image. Then, a simple nearest
neighbor based criterion is introduced for recognition. This idea
behind NOMR is that the visual face images can be divided into
two parts by SVD: the special intrapersonal subspace basis
corresponding to essence identity and the disguising space asso-
ciated with various appearance changes such as illumination etc.
Consistent with the Assumption 1, the same face images should
have similar NOMs.

Compared with traditional specific individual subspace based
methods, the proposed NOMR with precise, complete and expres-
sive basis is more robust for alleviating the effect of illumination
and heterogeneous (e.g. sketch face recognition), and more intui-
tive and powerful for handling the small sample size problem in
face recognition.

In literatures, some methods with SVD for face recognition
have been proposed but are quite different from ours. In [17], Hong
et al. firstly proposed a singular value decomposition based face
recognition method which uses the singular values of the original
face image as the feature. In refs. [18–20], SVD based methods
were further proposed for face recognition, which still used the
singular values as the image representation features. In spite of
perfect mathematical theory and good performance in small
sample size databases, many experiments show that the above
mentioned methods cannot get a satisfied recognition results on
large databases with variations occlusion. In contrast to the
methods with singular values, Tian et al. advocated that the left
and right orthogonal matrix of SVD have more information for
recognition [21]. They proposed a new feature extraction method
which takes the projection coefficients with a proper selected
orthogonal base of SVD (e.g. the average of one class images) as
the feature for face recognition. This method probably leads to a
better recognition performance with Bayesian classifier, but still
falls into the category of using the singular value feature (i.e. the

projection coefficients). In addition, the Non-negative Matrix
factorization (NMF) is also established on the SVD. Lee et al. firstly
use NMF to yield sparse representation of localized features to
represent distributed parts over a face image in [22]. However, the
NMF like Eigenface is established on the common subspace
assumption rather than the specific individual subspace
assumption.

The remainder of this paper is organized as follows. Section 2
presents the preliminary topics about the SVD. Section 3 develops
the idea of the nearest orthogonal matrix representation for face
recognition. Section 4 conducts extensive experiments to verify
the validity of our approach. Section 5 offers our conclusions and
future work.

2. Preliminaries of SVD

The singular value decomposition (SVD) is one of the matrix
factorization methods, which can be described with the following
Theorem in real field.

Theorem 1. SVD [23]. If AARm�n, then there exist orthogonal matrix
U ¼ u1;…;um½ �ARm�m and V ¼ v1;…; vn½ �T ARn�n such that

A¼ UΣVT ; ð2Þ
where Σ ¼ diagðσ1; σ2;…; σp;0;…;0Þ is an m� n rectangular diag-
onal matrix with nonnegative real numbers on the diagonal and
p¼ rankðAÞ.

The diagonal entries σi are denoted as the singular values of A,
by convention arranged in non-increasing order σ1Zσ2Z⋯Zσp
Z0. The columns of U are termed left-singular vectors of A and
the columns of V are called right-singular vectors of A.

In theory, the singular vector decomposition can be achieved by
the eigen-decomposition. However, the SVD is really computed more
efficiently. The specific algorithms can refer to the literature [24].

Naturally derived, the matrix AARm�n can also be expressed as

A¼ ∑
p

i ¼ 1
σiAi ¼ ∑

p

i ¼ 1
σiuivTi ð3Þ

with the singular values and vectors. Here ui and vi are the ith
columns of the corresponding singular vectors, σi are the ordered
singular values, p¼ rankðAÞ. Generally, the Eq. (3) is coined as the
separate model of SVD.

Removing the singular values from the Eq. (2), we will acquire

L : ¼ U � VT ¼ ∑
p

i ¼ 1
uiv

T
i : ð4Þ

Eq. (4) is usually called the symmetric orthogonalization of the
matricA and the symbol � denotes the outer product of two
matrices. It should be noted that L is unique since any sequence of
sign choices for the columns of V determines a sequence of signs
for the columns of U. In addition, L is also the nearest orthogonal
matrix (defined as an orthogonal matrix Q which has the mini-
mum‖Q�A‖F ) of A, which is underpinned by the following
theorem:

Theorem 2. NOM. Over all orthogonal matrices Q, jjQ�AjjF is
minimized if and only if Q ¼ L.

Theorem 2 is the key of the orthogonal procrustes problem
which was originally solved by Peter Schonemann in [25,26]. A
detailed proof is given in [27]. The classical OPP asks how closely a
matrix AARm�n can be approximated by a second given matrix
BARp�n multiplied by a matrix ΩARm�p with orthogonal columns
in the sense of Frobenius norm. This problem is equivalent to
finding the nearest orthogonal matrix (NOM) to a given matrix
M¼ BAT . In addition, this also intuitively makes sense because an
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