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a b s t r a c t

While classical classification methods such as support vector machine and its extensions (SVMs) obtain
strong generalization capability by maximizing the separation margin between binary classes, they are
usually sensitive to affine (or scaling) transformation of data. The optimal solutions of SVMs may be
misled by the spread of data and preferentially separate classes along large margin directions. To this
end, in this paper, we propose a novel minimum class spread constrained support vector machine
(MCSSVM) for pattern classification problems by simultaneously considering the maximization of inter-
class separation margin and the minimization of within-class spread of data, which corresponds to a
distribution-dependent regularization on the classification function by constraining the within-class
spread of input data. The basic idea of MCSSVM is to find a class distribution constrained hyperplane
such that one class (or normal class) can be enclosed in a minimum q-spread tube, while the other class
(or abnormal class) is farthest from this tube. MCSSVM can simultaneously achieve both maximum inter-
class margin and minimum within-class spread so as to enhance the generalization capability of the
proposed classifier. Moreover, the proposed method only requires simple extensions to existing
maximum margin formulations such as SVMs and still preserves their computational efficiency.
Generalization bound for MCSSVM is theoretically derived and the validity of MCSSVM is examined
by classification of toy and real-world classification problems, which demonstrate the superiority of our
method in comparison to other related state-of-the-art algorithms.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Pattern classification aims at learning a classifier (or classification
decision function) on a finite training dataset, which has a sound
generalization capacity for unseen testing data. Classification can be
achieved by a linear or nonlinear separating surface in the sample
space. In order to find out the optimal separating surface, in terms of
statistical learning theory [3], its VC dimensional complexity satisfies

[8,11]: VCr min ⌈Dmax
2=Δmin

2⌉; d
n o

þ1, where Dmax denotes the

maximal diameter of the smallest hypersphere which can cover all
the samples, Δmin denotes the minimal margin between two classes,
and d denotes the dimensional number of samples. Therefore, in
order to make VC minimal, we should try to makeΔmin become the
largest (or maximizing inter-class margin), and meanwhile try to
make Dmax minimal, namely minimizing within-class volume (or
within-class scatter). Thus, the inter-class margin and within-class
compactness are two important factors impacting on the perfor-
mance of classifiers. The former leads to the classical support vector
machine (SVM) [3,7], which is so-called linear unconstrained

classifier, while the latter leads to its dual version, i.e., the hyper-
sphere SVM [8], which is also called gap-tolerant classifier [11].

Traditionally, how to control the distribution spread (or scatter
in this context) of data has been an important issue in pattern
classification domain. There have existed many effective methods
used to address this issue up to date [23]. For instance, classical
linear discriminant analysis (LDA) [25] finds the projections of the
data such that the inter-class separation margin is large as much as
possible while the within-class scatter is small. However, the
second-order statistics in LDA are inappropriate for many real-
world data sets, and thus the classification performance of LDA is
typically poorer than that of SVMs [23]. The estimation of spread
should be tied to the margin criterion which is superior to the
second-order assumptions about the data distribution [3,23].
Along this study line, ellipsoidal kernel machines [11] were
proposed to normalize data in feature space by estimating the
boundary hyper-ellipsoids while avoiding second-order assump-
tions. Besides, very recently, relative margin machine (RMM) was
initially proposed by Shivaswamy et al. [17], in which margin was
measured in a relative sense rather than in the absolute sense.
Similarly, Dredze et al. [26] and Crammer et al. [27] consider a
distribution on the perceptron hyperplane. These distribution
assumptions permit update rules that resemble the whitening
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of the data [28], thus alleviating adversarial affine transformations
and producing changes to the basic maximummargin formulation,
which are similar in spirit to those which RMM provides.

Though the maximum margin classifiers like SVMs work well
in practice, their solutions are very sensitive to the affine or scaling
transformation of the input data space [23] due to the reason that
they exclusively measure margin by the data near the separation
boundary regardless of how spread the remaining data is away
from the separating hyperplane. For example, by transforming
both training and testing data by an invertible linear transforma-
tion, the solution of SVM and its resultant classification perfor-
mance can be significantly changed, which can naturally occur in
many real world problems in pattern classification, especially in
high dimensions [23]. Since simultaneously augmenting the inter-
class margin and diminishing within-class scatter may be bene-
ficial to the improvements of classification performance, one may
consider distributions over large-margin classifier solutions, which
provide a different estimate than the maximum margin setting in
SVMs. This has shown empirical improvements over SVMs
[1,12,11,17,23]. Note that, while RMM has achieved better classi-
fication performance than SVMs in some real-world applications
by controlling the data spread of input space, it may still suffer
from several practical problems such as class data imbalance and
distribution inconsistency of two class data, which will be dis-
cussed in Section 4.2.

To address the shortcomings existing in SVMs and RMM, we
propose a novel minimum class spread constrained support vector
machine (MCSSVM) model by controlling the within-class spread
of data whilst maximizing the separating margin between classes.
One distinctive feature of our method is to recover a large margin
solution normalized by explicitly controlling the within-class
distribution spread of the input data. We may use a 2D classifica-
tion problem illustrated in Fig. 1 to explain the difference among
SVMs, RMM and our method. In Fig. 1(a), both classes are
separated respectively by SVM with the largest margin, and
MCSSVM and RMM with both minimal spread of data and
maximal separation margin. Intuitively, the separation hyper-
planes of RMM and MCSSVM are more reasonable than that of
SVM. But, the classification hyperplane of RMM was obviously
biased for large class data due to the class data imbalance. Hence,
our method MCSSVM is superior to both SVM and RMM. Next, we
will further explore the scaling effect, which is a particular affine
transformation. To explore the scaling effect in a controlled
manner, first, the projection w of the separation line recovered
by the optimal RMM classifier is obtained. Therefore an orthogonal

vector v (such that wTv¼ 0, where aT denotes the transposition of
the vector or matrix a) can be obtained. The examples (training,
test and validation) are then projected onto the axes defined by w
and v. Each projection along w is preserved while the projection
along v is scaled by a factor s41. This merely stretches the data
further along directions orthogonal to w (i.e., along the optimal
classification boundary). More concisely, given an example x, the
following scaling transformation is applied:

w v
� � 1 0

0 s

� �
w v
� �Tx :

Fig. 1(b) shows the test accuracies of SVM, RMM and MCSSVM
across a range of scaling values s. As s grows, SVM further deviates
from the optimal RMM classifier and attempts to separate the data
along directions of large margin. While both RMM and MCSSVM
remain resilient to scaling, our proposed method MCSSVM main-
tains a relatively higher accuracy than those of SVM and RMM. The
situation depicted in Fig. 1 occurs whenever the data can be
enclosed by a (non-spherical) ellipsoid [32]. Fig. 1(b) shows that
the optimal hyperplane of SVM is not a scale invariant and
predictions of class labels may change if the data is rescaled before
learning. Meanwhile, RMM may not obtain the best classification
performance in the case of class data imbalance. But these draw-
backs existing in SVM and RMM can be overcome by MCSSVM via
simultaneously considering the within-class spread and the inter-
class separation margin.

Compared with the state-of-the-art methods, several main
contributions of this paper can be summarized as follows:

(1) We propose a robust support vector classification model
coined as MCSSVM via constraining the within-class spread
and maximizing the inter-class margin of input data, the
optimal solution of which is insensitive to the affine or scaling
transformation of input space. It is justified that MCSSVM can
simultaneously augment both the inter-class margin and
within-class compactness.

(2) The proposed model is presented by constructing a minimal
within-class q-spread tube enclosing all input data from one
class while keeping another class far away from this tube as
large as possible. For this end, two additional variables q and ρ
as well as two tunable parameters μ; v are introduced into the
model, so as to simultaneously control the within-class spread
and the inter-class margin of input data. Moreover, it is
theoretically proved that the parameters μ; v can control both

Fig. 1. (a) Data points from two classes (triangles and stars) are separated by the hyperplanes of SVM, RMM and MCSSVM, respectively; and (b) classification accuracy vs.
scaling factor s
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