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a b s t r a c t

The VC dimension measures the complexity of a learning machine, and a low VC dimension leads to
good generalization. While SVMs produce state-of-the-art learning performance, it is well known that
the VC dimension of a SVM can be unbounded; despite good results in practice, there is no guarantee of
good generalization. In this paper, we show how to learn a hyperplane classifier by minimizing an exact,
or Θ bound on its VC dimension. The proposed approach, termed as the Minimal Complexity Machine
(MCM), involves solving a simple linear programming problem. Experimental results show, that on a
number of benchmark datasets, the proposed approach learns classifiers with error rates much less than
conventional SVMs, while often using fewer support vectors. On many benchmark datasets, the number
of support vectors is less than one-tenth the number used by SVMs, indicating that the MCM does
indeed learn simpler representations.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Support vector machines are amongst the most widely used
machine learning techniques today. The classical SVM [1] has
evolved into a multitude of diverse formulations with different
properties. The most commonly used variants are the maximum
margin L1 norm SVM [1], and the least squares SVM (LSSVM) [2],
both of which require the solution of a quadratic programming
problem. In the last few years, SVMs have been applied to a
number of applications to obtain cutting edge performance; novel
uses have also been devised, where their utility has been amply
demonstrated [3–24]. SVMs were motivated by the celebrated
work of Vapnik and his colleagues on generalization, and the
complexity of learning. It is well known that the capacity of a
learning machine can be measured by its Vapnik–Chervonenkis
(VC) dimension. The VC dimension can be used to estimate a
probabilistic upper bound on the test set error of a classifier. A
small VC dimension leads to good generalization and low error
rates on test data.

In his widely read tutorial, Burges [25] states that SVMs can
have a very large VC dimension, and that “at present there exists no
theory which shows that good generalization performance is guar-
anteed for SVMs”. This paper shows how to learn a classifier with
large margin, by minimizing an exact (Θ) bound on the VC

dimension. In other words, the proposed objective linearly bounds
the VC dimension from both above and below. We show that this
leads to a simple linear programming problem. This approach is
generic, and it suggests numerous variants that can be derived
from it – as has been done for SVMs. Experimental results
provided in the sequel show that the proposed Minimal Complex-
ity Machine outperforms conventional SVMs in terms of test set
accuracy, while often using far fewer support vectors. That the
approach minimizes the machine capacity may be gauged from
the fact that on many datasets, the MCM yields better test set
accuracy while using less than 1=10�th the number of support
vectors obtained by SVMs.

The motivation for the MCM originates from some sterling
work on generalization [26–29]. We restrict our attention in this
paper to a given binary classification dataset for which a hyper-
plane classifier needs to be learnt. Consider such a binary classi-
fication problem with data points xi; i¼ 1;2;…;M, and where
samples of class þ1 and �1 are associated with labels yi¼1 and
yi ¼ �1, respectively. We assume that the dimension of the input
samples is n, i.e. xi ¼ ðxi1; xi2;…; xinÞT . For the set of all gap tolerant
hyperplane classifiers with margin dZdmin, Vapnik [28] showed
that the VC dimension γ is bounded by

γr1þmin
R2

d2min

;n

 !
ð1Þ

where R denotes the radius of the smallest sphere enclosing all the
training samples. Burges, in [25], stated that “the above arguments
strongly suggest that algorithms that minimize R2=d2 can be expected
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to give better generalization performance. Further evidence for this is
found in the following theorem of (Vapnik, 1998), which we quote
without proof”. We follow this line of argument and show, through
a constructive result, that this is indeed the case.

The remainder of this paper is organized as follows. Section 2
outlines the proposed optimization problem for a linear hyper-
plane classifier in the input space. Section 3 discusses the exten-
sion of the Minimum Complexity Machine to the kernel case.
Section 4 is devoted to a discussion of results obtained on selected
benchmark datasets. Section 5 contains concluding remarks. In
Appendix A, we derive an exact bound for the VC dimension of a
hyperplane classifier. Appendix B deals with the formulation of the
hard margin MCM.

2. The Linear Minimal Complexity Machine

We first consider the case of a linearly separable dataset. By
definition, there exists a hyperplane that can classify these points
with zero error. Let the separating hyperplane be given by

uTxþv¼ 0: ð2Þ
Let us denote

h¼maxi ¼ 1;2;…;M JuTxiþvJ
mini ¼ 1;2;…;M JuTxiþvJ

: ð3Þ

In Appendix A, we show that h may also be written as

h¼maxi ¼ 1;2;…;M yiðuTxiþvÞ
mini ¼ 1;2;…;M yiðuTxiþvÞ ; ð4Þ

and we show that there exist constants α; β40, α; βAR such that

αh2rγrβh2; ð5Þ
or, in other words, h2 constitutes a tight or exact (θ) bound on the
VC dimension γ. An exact bound implies that h2 and γ are close to
each other.

Therefore, the machine capacity can be minimized by keeping
h2 as small as possible. Since the square function ð�Þ2 is mono-
tonically increasing, we can minimize h instead of h2. We now
formulate an optimization problem that tries to find the classifier
with smallest machine capacity that classifies all training points of
the linearly separable dataset correctly; this problem is given by

minimize
u;v

h¼maxi ¼ 1;2;…;M yiðuTxiþvÞ
mini ¼ 1;2;…;M yiðuTxiþvÞ ð6Þ

Note that in deriving the exact bound in Appendix A, we
assumed that the separating hyperplane uTxþv¼ 0 correctly
separates the linearly separable training points; consequently, no
other constraints are present in the optimization problem (6).

In Appendix B, we show that the optimization problem (6) may
be reduced to the problem

min
w;b;h

h ð7Þ

hZyi � ½wTxiþb�; i¼ 1;2;…;M ð8Þ

yi � ½wTxiþb�Z1; i¼ 1;2;…;M; ð9Þ
where wARn, and b;hAR. We refer to the problem (7)–(9) as the
hard margin Linear Minimum Complexity Machine (Linear MCM).

Note that the variable h in (7) and that in (5) refer to the same
functional. By minimizing h in (7), we are minimizing an exact
bound on γ, the VC dimension of the classifier. Once w and b have
been determined by solving (7)–(9), the class of a test sample x
may be determined from the sign of the discriminant function

f ðxÞ ¼wTxþb ð10Þ

In general, datasets will not be linearly separable. The soft
margin equivalent of the MCM is obtained by introducing addi-
tional slack variables, and is given by

min
w;b;h

hþC � ∑
M

i ¼ 1
qi ð11Þ

hZyi � ½wTxiþb�þqi; i¼ 1;2;…;M ð12Þ

yi � ½wTxiþb�þqiZ1; i¼ 1;2;…;M ð13Þ

qiZ0; i¼ 1;2;…;M: ð14Þ
Here, the choice of C allows a tradeoff between the complexity
(machine capacity) of the classifier and the classification error.

Once w and b have been determined, the class of a test sample
x may be determined as before by using the sign of f (x) in (10). In
the sequel, we show how to extend the idea to nonlinearly
separable datasets.

3. The kernel MCM

We consider a map ϕðxÞ that maps the input samples from Rn

to Rl, where l4n. The separating hyperplane in the image space is
given by

uTϕðxÞþv¼ 0: ð15Þ
Following (11)–(13), the corresponding optimization problem

for the kernel MCM may be shown to be

min
w;b;h;q

hþC � ∑
M

i ¼ 1
qi ð16Þ

hZyi � ½wTϕðxiÞþb�þqi; i¼ 1;2;…;M ð17Þ

yi � ½wTϕðxiÞþb�þqiZ1; i¼ 1;2;…;M ð18Þ

qiZ0; i¼ 1;2;…;M: ð19Þ
The image vectors ϕðxiÞ; i¼ 1;2;…;M form an overcomplete

basis in the empirical feature space, in which w also lies. Hence,
we can write

w¼ ∑
M

j ¼ 1
λjϕðxjÞ: ð20Þ

Therefore,

wTϕðxiÞþb¼ ∑
M

j ¼ 1
λjϕðxjÞTϕðxiÞþb¼ ∑

M

j ¼ 1
λjKðxi; xjÞþb; ð21Þ

where Kðp; qÞ denotes the Kernel function with input vectors p and
q, and is defined as

Kðp; qÞ ¼ ϕðpÞTϕðqÞ: ð22Þ
Substituting (21) into (16)–(18), we obtain the following

optimization problem:

min
w;b;h;q

hþC � ∑
M

i ¼ 1
qi ð23Þ

hZyi � ∑
M

j ¼ 1
λjKðxi; xjÞþb

" #
þqi; i¼ 1;2;…;M ð24Þ

yi � ∑
M

j ¼ 1
λjKðxi; xjÞþb

" #
þqiZ1; i¼ 1;2;…;M ð25Þ

qiZ0; i¼ 1;2;…;M: ð26Þ
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