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a b s t r a c t

In this paper, finite-time stability of a class of fractional delayed neural networks of retarded-type with
commensurate order between 0 and 1 is investigated. For such problems in integer-order systems,
Lyapunov functions are usually constructed, whereas no specific Lyapunov functions exist in fractional-
order cases. By employing inequalities such as Hölder inequality, Gronwall inequalities and inequality
scaling skills, some finite-time stability results are derived. For fractional delayed neural models of
retarded-type with order 0oαo0:5 and 0:5rαo1, sufficient conditions for the finite-time stability are
presented. Numerical simulations also verify the theoretical results.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Fractional calculus was firstly introduced 300 years ago, which
mainly deals with derivatives and integrals of arbitrary order. Due
to its complexity and lack of application background, it did not
attract much attention for a long time. In recent decades, it has
been proved to be valuable tools in modeling many phenomena in
various fields of engineering, physics and economics [1–4]. It has
been known that compared with classical integer-order models,
fractional-order models could better describe the behavior of
physical systems. For example, recently, fractional-order models
of happiness [5] and love [6] have been developed and are claimed
to give a better representation than the integer-order dynamical
approaches. Since fractional derivatives are nonlocal and have
weakly singular kernels [7], the major advantage is that they
provide an excellent instrument for the description of memory
and hereditary properties of various materials and processes.

Since fractional calculus has the memory, some researchers
recently introduced it to neural networks to form fractional-order
neural models, which could better describe the dynamical behavior of
the neurons, such as “memory”. Also, it has been pointed out that
fractional derivatives provide neurons with a fundamental and general
computation ability that can contribute to efficient information
processing, stimulus anticipation and frequency-independent phase
shifts of oscillatory neuronal firing [8]. More recently, efforts have been
made to investigate the complex dynamics of fractional-order neural

networks. In [9], Arena et al. first introduced a cellular neural network
with fractional-order cells. In [10], Petráš presented a fractional-order
three-cell network which exhibits limit cycles and stable orbits for
different parameter values. Furthermore, note that fractional-order
recurrent neural networks might be expected to play an important
role in parameter estimation [11–14]. Therefore, the incorporation of
fractional derivatives and integrals into the neural networks is a great
improvement in modeling and it is worthwhile to study.

As we know, stability analysis, such as Lyapunov stability, is one
of central tasks in the study of fractional differential systems.
Stability of neural networks has been widely investigated and
excellent results have been obtained. In recent years, there have
been some advances in stability theory of fractional differential
systems [15–18]. On the other hand, since bifurcation and chaos of
fractional-order neural networks were firstly investigated in [19,20],
some important and interesting results about stability of fractional-
order artificial neural networks have been obtained. For instance, in
[21], the dynamics of fractional-order delay-free Hopfield neural
networks, including stability and multi-stability, bifurcations and
chaos, have been investigated. In [22], a fractional-order Hopfield
neural model was proposed, and its stability was investigated by an
energy-like function. Yu et al. [23] investigated α-stability and
α-synchronization for fractional-order neural networks. Chaos and
hyperchaos in fractional-order cellular neural networks were
discussed in [24].

Nowadays much work has been done about the stability, such as
Lyapunov stability, asymptotic stability, uniform stability, ultimately
uniformly bounded stability and exponential stability, which are all
concerned with the behavior of systems within an infinite time
interval. However, in some practical applications the main concern is
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the behavior of systems over a finite time interval. Actually most real
neural systems only operate over finite time intervals. In such cases, it
is necessary to care more about the finite-time behavior of systems
than the asymptotic behavior over an infinite time interval. Therefore
the finite-time stability was introduced, which was firstly put forward
in the Russian literatures [25–27]. It could not only deal with systems
with prescribed bounds and finite time intervals, but also obtain the
estimated time of finite-time stability. All these are the advantages of
finite-time stability over Lyapunov stability. During the 1960s, finite-
time stability frequently appeared in the control literatures [28,29].
Until now, there are many valuable results about finite-time stability
[30–36]. Recently, research about the finite-time behaviors could also
be carried out on complex networks. But few results [37,38] are
concerned with the finite-time stability of fractional-order neural
networks. In [39], uniform stability of a class of fractional-order neural
networks with delay was investigated. In [37], by the Laplace trans-
form, the generalized Gronwall inequality and estimates of Mittag–
Leffler functions, the finite-time stability of retarded-type cellular
neural networks with order lying in (1,2) has been studied. However,
for the models with order between 0 and 1, no specific Lyapunov
functions exist for stability analysis; further the estimates in [37] could
not be applied to such models. Motivated by the above discussions, to
derive results about the finite-time stability, Hölder inequalities,
Gronwall inequalities and inequality scaling skills are employed. Then
sufficient conditions ensuring the finite-time stability of fractional
retarded-type neural networks with order lying in (0,1) are derived.

The rest of the paper is organized as follows. Some necessary
definitions and lemmas are recalled in Section 2. Two sufficient
conditions ensuring the finite-time stability of fractional neural
network with order 0oαo0:5 and 0:5rαo1 in Section 3 are
presented. Numerical simulations on a neural example are given in
Section 4.

Throughout the paper, denote ‖x‖¼∑n
i ¼ 1jxij and ‖A‖¼

max1r jrn∑n
i ¼ 1jaijj, which are the Euclidean vector norm and

matrix norm, respectively; xi and aij are the elements of the vector
x and the matrix A, respectively. Denote the space of continuous
functions mapping ½�τ;0� into Rn by C.

2. Preliminaries

In this section, some definitions, lemmas and well-known
results about fractional calculus are recalled.

Definition 2.1 (Podlubny [1]). The fractional integral with non-
integer order α40 of function x(t) is defined as follows:

D�α
t0 ;t xðtÞ ¼

1
ΓðαÞ

Z t

t0
ðt�τÞα�1xðτÞ dτ;

where Γð�Þ is the Gamma function ΓðsÞ ¼ R1
0 ts�1e� t dt.

Definition 2.2 (Podlubny [1]). The Riemann–Liouville derivative
of fractional order α of function x(t) is given as

RLD
α
t0 ;t xðtÞ ¼

dk

dtk
D�ðk�αÞ
t0 ;t xðtÞ ¼ dk

dtk
1

Γðk�αÞ
Z t

t0
ðt�τÞk�α�1xðτÞ dτ;

where k�1oαokAZþ .

Definition 2.3 (Podlubny [1]). The Caputo derivative of fractional
order α of function x(t) is defined as follows:

CD
α
t0 ;t xðtÞ ¼D�ðk�αÞ

t0 ;t
dk

dtk
xðtÞ ¼ 1

Γðk�αÞ
Z t

t0
ðt�τÞk�α�1xðkÞðτÞ dτ;

where k�1oαokAZþ .

Lemma 2.1 (Mitrinović and Dragoslav [40], Hölder inequality).
Assume that p; q41, and 1=pþ1=q¼ 1, if jf ð�Þjp, jgð�ÞjqAL1ðEÞ, then

f ð�Þgð�ÞAL1ðEÞ and
Z
E
jf ðxÞgðxÞj dxr

Z
E
jf ðxÞjp dx

� �1=p Z
E
jgðxÞjq dx

� �1=q

: ð1Þ

where L1ðEÞ is the Banach space of all Lebesgue measurable functions
f : E-R with

R
Ejf ðxÞj dxo1.

Let p; q¼ 2, it reduces to the Cauchy–Schwartz inequality as
follows:
Z
E
jf ðxÞgðxÞj dx

� �2

r
Z
E
jf ðxÞj2 dx

Z
E
jgðxÞj2 dx: ð2Þ

Lemma 2.2 (Kuczma [41]). Let nAN, and let x1; x2;…; xn be non-
negative real numbers. Then for ω41,

∑
n

i ¼ 1
xi

 !ω

rnω�1 ∑
n

i ¼ 1
xωi :

Lemma 2.3 (Corduneanu [42], Gronwall inequality). If

xðtÞrhðtÞþ
Z t

t0
kðsÞxðsÞ ds; tA ½t0; TÞ;

where all the functions involved are continuous on ½t0; TÞ, Tr1, and
kðtÞZ0, then x(t) satisfies

xðtÞrhðtÞþ
Z t

t0
kðsÞhðsÞ exp

Z t

s
kðuÞ du

� �
ds; tA ½t0; TÞ: ð3Þ

If, in addition, h(t) is nondecreasing, then

xðtÞrhðtÞ exp
Z t

t0
kðsÞ ds

� �
; tA ½t0; TÞ:

From the Laplace transform of fractional derivative, it is
recognized that the main advantage of the Caputo derivative is
that it only requires initial conditions given in terms of integer-
order derivatives, representing well-understood features of physi-
cal situations and making it more applicable to real world
problems. So in this paper, we deal with the fractional-order
neural networks involving Caputo derivative, and the notation
Dα is chosen as the Caputo fractional derivative operator CD

α
0;t .

The following properties of operator Dα are provided.

Lemma 2.4 (Li and Deng [43]). If xðtÞACk½0;1Þ, and k�1oαo
kAZþ , then

(1) D�αD�βxðtÞ ¼D�ðαþβÞxðtÞ; α;βZ0,
(2) DαD�αxðtÞ ¼ xðtÞ; αZ0,
(3) D�αDαxðtÞ ¼ xðtÞ�∑k�1

j ¼ 0ðtj=i!ÞxðjÞð0Þ; αZ0.

3. Main results

In this section, two sufficient conditions are derived for a class
of fractional order neural networks with order 0oαo0:5 and
0:5rαo1.

Consider the following fractional order cellular neural net-
works:

DαxiðtÞ ¼ �cixiðtÞþ ∑
n

j ¼ 1
aijðtÞf jðxjðtÞÞþ ∑

n

j ¼ 1
bijðtÞgjðxjðt�τÞÞþ IiðtÞ;

xiðtÞ ¼ϕiðtÞ; tA ½�τ;0�;

8><
>:

ð4Þ
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